terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Abstract

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis. In this study, DAP-Seq was used to investigate the regulatory activity of the whole WRKY family in gDNA from young leaves of Cabernet Franc. This approach allowed the definition of the WRKYs cistrome (i.e., the set of bound genes). 46 out of 59 WRKYs gave results, outlining a total number of 674,407 binding events along whole grapevine genome, of which 459,791 (68%) are localized in the perigenic region, according to its intense regulatory activity. Cistrome maps were integrated with gene centred co-expression networks based on a large transcriptomics dataset, and with the results of an ATAC-Seq. This allowed to isolate some High Confidence Targets, characterized by high degree of co-expression with the related TF and laying down in genomic regions of open chromatin. The networks generated can be used to provide a complete regulatory map of WRKY family, shedding light on its biological role in grapevine.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Gabriele Magon1*, Giovanni Gabelli1, Carlotta Pirrello2, Sara Zenoni3, Valerio Licursi4, Luis Orduña Rubio5, Gabriele Magris6, Margherita Lucchin1, Josè Tomàs Matus5, Mario Pezzotti3, Michele Morgante6 and Alessandro Vannozzi1

1 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy
2 Research and Innovation Center, Fondazione Edmund Mach, Via Edmund Mach 1 – 38098 San Michele all’Adige (TN), Italy
3 Department of Biotechnology, Cà Vignal 1 – Università degli Studi di Verona, Strada Le Grazie 15 – 37134 Verona (VR), Italy
4 Department of Biology and Biotechnology “Charles Darwin” – Università “La Sapienza” di Roma, Piazzale Aldo Moro 5 – 00185 Roma (RM), Italy
5 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Carrer del Catedràtic Agustín Escardino Benlloch – 46980 Paterna, Valencia, Spain
6 Department of Agricultural, Food, Environmental and Animal Sciences (D4A) – Università degli Studi di Udine, Via delle Scienze 206 – 33100 Udine (UD), Italy

Contact the author*

Keywords

DAP-Seq, WRKY, transcription factors, gene regulation, regulatory network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.