terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Abstract

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis. In this study, DAP-Seq was used to investigate the regulatory activity of the whole WRKY family in gDNA from young leaves of Cabernet Franc. This approach allowed the definition of the WRKYs cistrome (i.e., the set of bound genes). 46 out of 59 WRKYs gave results, outlining a total number of 674,407 binding events along whole grapevine genome, of which 459,791 (68%) are localized in the perigenic region, according to its intense regulatory activity. Cistrome maps were integrated with gene centred co-expression networks based on a large transcriptomics dataset, and with the results of an ATAC-Seq. This allowed to isolate some High Confidence Targets, characterized by high degree of co-expression with the related TF and laying down in genomic regions of open chromatin. The networks generated can be used to provide a complete regulatory map of WRKY family, shedding light on its biological role in grapevine.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Gabriele Magon1*, Giovanni Gabelli1, Carlotta Pirrello2, Sara Zenoni3, Valerio Licursi4, Luis Orduña Rubio5, Gabriele Magris6, Margherita Lucchin1, Josè Tomàs Matus5, Mario Pezzotti3, Michele Morgante6 and Alessandro Vannozzi1

1 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy
2 Research and Innovation Center, Fondazione Edmund Mach, Via Edmund Mach 1 – 38098 San Michele all’Adige (TN), Italy
3 Department of Biotechnology, Cà Vignal 1 – Università degli Studi di Verona, Strada Le Grazie 15 – 37134 Verona (VR), Italy
4 Department of Biology and Biotechnology “Charles Darwin” – Università “La Sapienza” di Roma, Piazzale Aldo Moro 5 – 00185 Roma (RM), Italy
5 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Carrer del Catedràtic Agustín Escardino Benlloch – 46980 Paterna, Valencia, Spain
6 Department of Agricultural, Food, Environmental and Animal Sciences (D4A) – Università degli Studi di Udine, Via delle Scienze 206 – 33100 Udine (UD), Italy

Contact the author*

Keywords

DAP-Seq, WRKY, transcription factors, gene regulation, regulatory network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Development of spectral indices to monitoring non-destructive of ripeness for water stressed grapevine (Vitis vinifera L.) using contour map optimization

Accurate and non-destructive monitoring of grape ripening is essential for optimising harvest decisions, particularly under water stress conditions.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Development of a standardized method for metabolite analysis by NMR to assess wine authenticity

The wine sector generates a considerable amount of wealth but is facing a growing problem of fraud. Wine counterfeiting is one of the oldest and most common cases of food fraud worldwide. Therefore, the authenticity and traceability of wine are major concerns for both the industry and consumers. To address these issues, robust and reliable analysis and control methods are necessary. Several methods have been developed, ranging from simple organoleptic tests to more advanced methodologies such as isotopic techniques or residual radioactivity measurements.