terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Abstract

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis. In this study, DAP-Seq was used to investigate the regulatory activity of the whole WRKY family in gDNA from young leaves of Cabernet Franc. This approach allowed the definition of the WRKYs cistrome (i.e., the set of bound genes). 46 out of 59 WRKYs gave results, outlining a total number of 674,407 binding events along whole grapevine genome, of which 459,791 (68%) are localized in the perigenic region, according to its intense regulatory activity. Cistrome maps were integrated with gene centred co-expression networks based on a large transcriptomics dataset, and with the results of an ATAC-Seq. This allowed to isolate some High Confidence Targets, characterized by high degree of co-expression with the related TF and laying down in genomic regions of open chromatin. The networks generated can be used to provide a complete regulatory map of WRKY family, shedding light on its biological role in grapevine.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Gabriele Magon1*, Giovanni Gabelli1, Carlotta Pirrello2, Sara Zenoni3, Valerio Licursi4, Luis Orduña Rubio5, Gabriele Magris6, Margherita Lucchin1, Josè Tomàs Matus5, Mario Pezzotti3, Michele Morgante6 and Alessandro Vannozzi1

1 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy
2 Research and Innovation Center, Fondazione Edmund Mach, Via Edmund Mach 1 – 38098 San Michele all’Adige (TN), Italy
3 Department of Biotechnology, Cà Vignal 1 – Università degli Studi di Verona, Strada Le Grazie 15 – 37134 Verona (VR), Italy
4 Department of Biology and Biotechnology “Charles Darwin” – Università “La Sapienza” di Roma, Piazzale Aldo Moro 5 – 00185 Roma (RM), Italy
5 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Carrer del Catedràtic Agustín Escardino Benlloch – 46980 Paterna, Valencia, Spain
6 Department of Agricultural, Food, Environmental and Animal Sciences (D4A) – Università degli Studi di Udine, Via delle Scienze 206 – 33100 Udine (UD), Italy

Contact the author*

Keywords

DAP-Seq, WRKY, transcription factors, gene regulation, regulatory network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues.

Progetto di zonazione delle valli di Cembra e dell’Adige. Analisi del comportamento della varietà Pinot nero in ambiente subalpino

Nel 1990 la Cantina LA VIS ha intrapreso un progetto di zonazione dei terreni vitati allo scopo di acquisire le conoscenze scientifiche atte a consentire il miglioramento delle qualità dei prodotti. Tale progetto si è articolato su di una superficie di 2000 ettari ubicati lungo l’asta fluviale del fiume Adige da Trento a Salorno e del torrente Avisio da Lavis a Segonzano.

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition