terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

Abstract

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis. In this study, DAP-Seq was used to investigate the regulatory activity of the whole WRKY family in gDNA from young leaves of Cabernet Franc. This approach allowed the definition of the WRKYs cistrome (i.e., the set of bound genes). 46 out of 59 WRKYs gave results, outlining a total number of 674,407 binding events along whole grapevine genome, of which 459,791 (68%) are localized in the perigenic region, according to its intense regulatory activity. Cistrome maps were integrated with gene centred co-expression networks based on a large transcriptomics dataset, and with the results of an ATAC-Seq. This allowed to isolate some High Confidence Targets, characterized by high degree of co-expression with the related TF and laying down in genomic regions of open chromatin. The networks generated can be used to provide a complete regulatory map of WRKY family, shedding light on its biological role in grapevine.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Gabriele Magon1*, Giovanni Gabelli1, Carlotta Pirrello2, Sara Zenoni3, Valerio Licursi4, Luis Orduña Rubio5, Gabriele Magris6, Margherita Lucchin1, Josè Tomàs Matus5, Mario Pezzotti3, Michele Morgante6 and Alessandro Vannozzi1

1 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy
2 Research and Innovation Center, Fondazione Edmund Mach, Via Edmund Mach 1 – 38098 San Michele all’Adige (TN), Italy
3 Department of Biotechnology, Cà Vignal 1 – Università degli Studi di Verona, Strada Le Grazie 15 – 37134 Verona (VR), Italy
4 Department of Biology and Biotechnology “Charles Darwin” – Università “La Sapienza” di Roma, Piazzale Aldo Moro 5 – 00185 Roma (RM), Italy
5 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Carrer del Catedràtic Agustín Escardino Benlloch – 46980 Paterna, Valencia, Spain
6 Department of Agricultural, Food, Environmental and Animal Sciences (D4A) – Università degli Studi di Udine, Via delle Scienze 206 – 33100 Udine (UD), Italy

Contact the author*

Keywords

DAP-Seq, WRKY, transcription factors, gene regulation, regulatory network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

The estimation of the clear-sky effective PAR resources in a mountain area

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).