Terroir 2016 banner
IVES 9 IVES Conference Series 9 Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

Abstract

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal). Under permanent green cover the mineral nitrogen content in the soil was significantly lower than under green cover, which was loosened up or broken up. Regarding the nitrogen demand of the vine the best results of the mineral soil nitrogen content were found by loosening up the soil by the end of April and breaking it open two weeks later. Permanent green cover inhibited shoot length development and the total acidity of the must was lower. The content of yeast assimilable nitrogen and the yield were reduced, but must density as well as potassium and ash contents of the wine were slightly higher. There were no differences in the vinification of the grapes of the different origins. Significant differences in the sensory evaluation could not be related to different methods of soil cultivation.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Martin MEHOFER (1) and Helmut REDL†(2)

(1) Federal College and Institute for Viticulture and Pomology Klosterneuburg, Department of Viticulture, A-3400 Klosterneuburg, Wiener Straße 74, Austria
(2) University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, A-1180 Wien, Gregor-Mendel-Straße 33, Austria

Contact the author

Keywords

grapevine, soil management, nutrients, nitrogen supply, must contents, wine quality

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation.

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.

Oak wood influence on the organoleptic perception of red wine

Some wood substances such as ellagitannins (vescalagin, castalagin, grandinin, roburins (A, B, C, D, E)…) can be extracted during wine ageing in oak barrels. The level of these hydrolysable tannins in wine depends of the species and origin of oak wood as well as its treatment during barrel realization.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.