Terroir 2016 banner
IVES 9 IVES Conference Series 9 Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

Abstract

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal). Under permanent green cover the mineral nitrogen content in the soil was significantly lower than under green cover, which was loosened up or broken up. Regarding the nitrogen demand of the vine the best results of the mineral soil nitrogen content were found by loosening up the soil by the end of April and breaking it open two weeks later. Permanent green cover inhibited shoot length development and the total acidity of the must was lower. The content of yeast assimilable nitrogen and the yield were reduced, but must density as well as potassium and ash contents of the wine were slightly higher. There were no differences in the vinification of the grapes of the different origins. Significant differences in the sensory evaluation could not be related to different methods of soil cultivation.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Martin MEHOFER (1) and Helmut REDL†(2)

(1) Federal College and Institute for Viticulture and Pomology Klosterneuburg, Department of Viticulture, A-3400 Klosterneuburg, Wiener Straße 74, Austria
(2) University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, A-1180 Wien, Gregor-Mendel-Straße 33, Austria

Contact the author

Keywords

grapevine, soil management, nutrients, nitrogen supply, must contents, wine quality

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

PyExpress – A pipeline for fast and reliable UAV image processing in vineyards

Increasing drought poses a challenge to viticulture, with complex impacts on grape yield and quality. The use of Unmanned Aerial Vehicles (UAV) in Precision Viticulture offers a valuable tool to detect drought stress, capturing its spatio-temporal variability and thus, supports management strategies.

Extraction of stilbenes from grape cane waste and their possible applications

Vine pruning residues constitute a significant fraction of vitivinicultural waste; in fact, depending on the variety and training system, they can reach 1-5 tons/ha/year.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage.