Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine. 

The wine quality is closely related to its aromatic expression, influenced by the grape variety, viticultural management techniques and environmental factors, such as soil and climate (3). It has been shown that the soil influences the taste of wines and the typicity of organoleptic expression. This is largely mediated by the availability of water and nitrogen (4). The climate effect is mediated by air temperature and water balance (5). 

The volatile compounds developed during wine aging and involved in the expression of the bouquet may be affected by vine water and nitrogen status (6). High nitrogen status in vines favors high nitrogen levels in both grape berries and wine. Thus, compounds such as tabanone, DMS, esters and aromatic heterocycles were measured in aged Bordeaux and Champagne reserve wines. Their concentrations were correlated to the water and nitrogen status in vine (evaluated during the season for the year production with Bordeaux vine) and the amino acids concentration in wines for Champagne reserve wine. 

For both wines types, it has been revealed that the vine nitrogen status and the wine nitrogen composition have an important role on DMS, ester and aromatic heterocycles formation. Furthermore, a correlation between tabanones concentrations and the vine water status was observed. 

Data collection for both red Bordeaux and Champagne reserve wines, which bouquet is well disguised, highlighted that nitrogen is involved in the various stages, common and/or different for both wine type, from vine formation to aged wine. 

(1) Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. Food Qual. Prefer. 2015, 42, 110–122. 
(2) Tominaga, T.; Guimbertau, G.; Dubourdieu, D. J. Agric. Food Chem. 2003, 51 (4), 1016–1020. 
(3) Jackson, D. I.; Lombard, P. B. Am. J. Enol. Vitic. 1993, 44 (4), 409–430. 
(4) Van Leeuwen, C.; Seguin, G. J. Wine Res. 2006, 17 (1), 1–10. 
(5) van Leeuwen, C. In Managing Wine Quality; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2010; Vol. 1, pp 273–315. 
(6) Picard, M.; van Leeuwen, C.; Guyon, F.; Gaillard, L.; de Revel, G.; Marchand, S. Vine Front. Chem. 2017, 5 

Authors: Nicolas Le Menn (1, 4), Cornelis Van Leeuwen (3), Richard Marchal (2), Gilles de Revel (1), Dominique Demarville (4), Stéphanie Marchand (1) 

1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France 
2) Univ. de Reims Champagne-Ardenne, URVVC EA 4707, BP-1039 51687 , Reims, Cedex 2, France 
3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France 
4) Champagne Veuve Clicquot, 13 rue Albert Thomas, 51100 Reims, France 

Email: stephanie.marchand-marion@u-bordeaux.fr 

Keywords : Ageing, Nitrogen status , Aromas, vines 

Share via
Copy link
Powered by Social Snap