terclim by ICS banner
IVES 9 IVES Conference Series 9 High-resolution aerial thermography for water stress estimation in grapevines

High-resolution aerial thermography for water stress estimation in grapevines

Abstract

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels. A commercial Unmanned aerial vehicle (UAV) equipped with an integrated RGB, and thermal camera was used to capture high-resolution aerial images over the vineyard. Eight different pixel extraction methods, considering classical and novel approaches, were tested against manual pixel extraction to determine which method performed the best. From the methods tested, the two Gaussian mixture models (GMM2) showed the best performance in terms of accuracy and precision. The average canopy temperature obtained by this method was contrasted with stem water potential measurements, showing significant differences between well-watered and dryland treatments. Aerial thermography complemented by the GMM2 method shows great potential as a tool for water stress estimation in grapevines, however, several factors play a role in method performance. These include the degree of stress in the vineyard, amount of cover crops, and canopy density amongst others. Suggestions regarding the critical aspects that need to be evaluated further to optimize the methodology and reduce the uncertainties associated to the application of this technology will be discussed in context of the results obtained.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Carlos Poblete-Echeverria1*, Thomas Chalmers1, Melane A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Precision viticulture, Water management, Digital analysis, Pixel extraction methods, Thermal imagery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

La zonazione viticola e i compiti dell’amministrazione regionale

Solo attraverso un adeguato intervento di estirpazione e reimpianto dei vigneti è possibile preservare, adeguare e valorizzare il patrimonio viticolo e le produzioni che da esso derivano.
Il reimpianto dei vigneti è pertanto da intendersi come una normale pratica agricola, alla pari della rimonta di stalla in campo zootecnico, ma può assumere toni problematici quando, come si verifica adesso in Toscana per una serie di circostanze legate alla profonda trasfor­mazione della viticoltura avvenuta negli ultimi 30 anni, troppi impianti giungono contem­poraneamente a fine ciclo produttivo e devono essere rinnovati.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

Simultaneous determination of ethanol and methanol in wines using FTIR and PLS regression

Wine is a complex hydroalcoholic solution, with ethanol levels serving as a critical quality parameter.