terclim by ICS banner
IVES 9 IVES Conference Series 9 High-resolution aerial thermography for water stress estimation in grapevines

High-resolution aerial thermography for water stress estimation in grapevines

Abstract

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels. A commercial Unmanned aerial vehicle (UAV) equipped with an integrated RGB, and thermal camera was used to capture high-resolution aerial images over the vineyard. Eight different pixel extraction methods, considering classical and novel approaches, were tested against manual pixel extraction to determine which method performed the best. From the methods tested, the two Gaussian mixture models (GMM2) showed the best performance in terms of accuracy and precision. The average canopy temperature obtained by this method was contrasted with stem water potential measurements, showing significant differences between well-watered and dryland treatments. Aerial thermography complemented by the GMM2 method shows great potential as a tool for water stress estimation in grapevines, however, several factors play a role in method performance. These include the degree of stress in the vineyard, amount of cover crops, and canopy density amongst others. Suggestions regarding the critical aspects that need to be evaluated further to optimize the methodology and reduce the uncertainties associated to the application of this technology will be discussed in context of the results obtained.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Carlos Poblete-Echeverria1*, Thomas Chalmers1, Melane A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Precision viticulture, Water management, Digital analysis, Pixel extraction methods, Thermal imagery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

Pure wine vs natural wine

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec

La protection des terroirs viticoles dans l’AOC Côtes du Rhône (France)

[English version below]

Les terroirs viticoles, et plus particulièrement ceux des vignobles AOC, sont aujourd’hui menacés par de multiples agressions. Ces territoires sont non seulement l’outil de production

Can different green manure fertilizations affect the vine balance and grape quality? First evidence of multi-year study

In the context of sustainable viticulture that implements organic practices to maintain soil fertility, green manuring plays a crucial role due to its ability to stock carbon and nitrogen in soil while supporting biodiversity.