terclim by ICS banner
IVES 9 IVES Conference Series 9 High-resolution aerial thermography for water stress estimation in grapevines

High-resolution aerial thermography for water stress estimation in grapevines

Abstract

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels. A commercial Unmanned aerial vehicle (UAV) equipped with an integrated RGB, and thermal camera was used to capture high-resolution aerial images over the vineyard. Eight different pixel extraction methods, considering classical and novel approaches, were tested against manual pixel extraction to determine which method performed the best. From the methods tested, the two Gaussian mixture models (GMM2) showed the best performance in terms of accuracy and precision. The average canopy temperature obtained by this method was contrasted with stem water potential measurements, showing significant differences between well-watered and dryland treatments. Aerial thermography complemented by the GMM2 method shows great potential as a tool for water stress estimation in grapevines, however, several factors play a role in method performance. These include the degree of stress in the vineyard, amount of cover crops, and canopy density amongst others. Suggestions regarding the critical aspects that need to be evaluated further to optimize the methodology and reduce the uncertainties associated to the application of this technology will be discussed in context of the results obtained.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Carlos Poblete-Echeverria1*, Thomas Chalmers1, Melane A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Precision viticulture, Water management, Digital analysis, Pixel extraction methods, Thermal imagery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Influence of maturity on grape tyrosinase activity

Enzymatic browning of grape must remains a major issue in winemaking, especially when grapes are affected by grey rot.

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.