terclim by ICS banner
IVES 9 IVES Conference Series 9 High-resolution aerial thermography for water stress estimation in grapevines

High-resolution aerial thermography for water stress estimation in grapevines

Abstract

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels. A commercial Unmanned aerial vehicle (UAV) equipped with an integrated RGB, and thermal camera was used to capture high-resolution aerial images over the vineyard. Eight different pixel extraction methods, considering classical and novel approaches, were tested against manual pixel extraction to determine which method performed the best. From the methods tested, the two Gaussian mixture models (GMM2) showed the best performance in terms of accuracy and precision. The average canopy temperature obtained by this method was contrasted with stem water potential measurements, showing significant differences between well-watered and dryland treatments. Aerial thermography complemented by the GMM2 method shows great potential as a tool for water stress estimation in grapevines, however, several factors play a role in method performance. These include the degree of stress in the vineyard, amount of cover crops, and canopy density amongst others. Suggestions regarding the critical aspects that need to be evaluated further to optimize the methodology and reduce the uncertainties associated to the application of this technology will be discussed in context of the results obtained.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Carlos Poblete-Echeverria1*, Thomas Chalmers1, Melane A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Precision viticulture, Water management, Digital analysis, Pixel extraction methods, Thermal imagery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha.

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS).

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as
well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.