OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Abstract

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB). Consequently, a comprehensive understanding of the interactions between yeasts and LAB would be valuable for an efficient implementation of malolactic fermentation (MLF). To this end, the present study was carried out to elucidate the impact of this inoculation protocol on the growth and malolactic activity of Lactobacillus plantarum and Oenococcus oeni strains used to induce MLF, and finally on the chemical and volatile profile of Nebbiolo wines. MLF was carried out by inoculating LAB at the beginning and at the end of the alcoholic fermentation. Yeast inoculation protocol and the combination of tested species influenced LAB population dynamics and malic acid consumption. MLF in which L. plantarum was inoculated at the beginning of the fermentation were completed faster than those inoculated with O. oeni. On the contrary, when L. plantarum was inoculated at the end of alcoholic fermentation a stuck MLF was observed, while O. oeni completed successfully MLF, indicating that inoculation timing of both LAB species was critical to how rapidly starts and finish the MLF. The presence of Starm. bacillaris in mixed fermentations promoted O. oeni growth and increased malic acid consumption rate. Analysis from volatile composition showed that LAB species selection had a greater impact to aroma profile of the wines than inoculation time. This knowledge could be useful to better control MLF in mixed fermentations with Starm. bacillaris and S. cerevisiae, and underlines the importance of the inoculated yeasts on the growth and malolactic activity of the LAB.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Vasileios Englezos (1), David Castrillo Cachón (2), Kalliopi Rantsiou (1), Blanco Pilar (2), Maurizio Petrozziello (3), Matteo Pollon (1), Simone Giacosa (1),SusanaRío Segade (1), Luca Rolle (1), Luca Cocolin (1) 

1 Universitàdegli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy 
2 Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL), Ponte San Clodio s/n. 32427, Leiro, Ourense, Spain 
3 Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Italy) – Centro di ricerca Viticoltura ed Enologia – CREA – VE, via P. Micca 35, Asti, Italy 

Contact the author

Keywords

Starmerella bacillaris, Saccharomyces cerevisiae, Lactobacillus plantarum, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

Caractéristiques édaphiques et potentialités qualitatives des terroirs du vignoble languedocien

Dans le vignoble languedocien, les potentialités qualitatives des terroirs dépendent surtout de leurs caractéristiques édaphiques : la fertilité agronomique d’une part et sa nature géopédologique d’autre part.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.