OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Abstract

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB). Consequently, a comprehensive understanding of the interactions between yeasts and LAB would be valuable for an efficient implementation of malolactic fermentation (MLF). To this end, the present study was carried out to elucidate the impact of this inoculation protocol on the growth and malolactic activity of Lactobacillus plantarum and Oenococcus oeni strains used to induce MLF, and finally on the chemical and volatile profile of Nebbiolo wines. MLF was carried out by inoculating LAB at the beginning and at the end of the alcoholic fermentation. Yeast inoculation protocol and the combination of tested species influenced LAB population dynamics and malic acid consumption. MLF in which L. plantarum was inoculated at the beginning of the fermentation were completed faster than those inoculated with O. oeni. On the contrary, when L. plantarum was inoculated at the end of alcoholic fermentation a stuck MLF was observed, while O. oeni completed successfully MLF, indicating that inoculation timing of both LAB species was critical to how rapidly starts and finish the MLF. The presence of Starm. bacillaris in mixed fermentations promoted O. oeni growth and increased malic acid consumption rate. Analysis from volatile composition showed that LAB species selection had a greater impact to aroma profile of the wines than inoculation time. This knowledge could be useful to better control MLF in mixed fermentations with Starm. bacillaris and S. cerevisiae, and underlines the importance of the inoculated yeasts on the growth and malolactic activity of the LAB.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Vasileios Englezos (1), David Castrillo Cachón (2), Kalliopi Rantsiou (1), Blanco Pilar (2), Maurizio Petrozziello (3), Matteo Pollon (1), Simone Giacosa (1),SusanaRío Segade (1), Luca Rolle (1), Luca Cocolin (1) 

1 Universitàdegli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy 
2 Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL), Ponte San Clodio s/n. 32427, Leiro, Ourense, Spain 
3 Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Italy) – Centro di ricerca Viticoltura ed Enologia – CREA – VE, via P. Micca 35, Asti, Italy 

Contact the author

Keywords

Starmerella bacillaris, Saccharomyces cerevisiae, Lactobacillus plantarum, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.