terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

Abstract

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.

Preliminary results showed a significant effect of CPPU on stem diameter when compared to that in untreated being 5.49 ±0.22 SE, 6.05 ±0.20 and 6.17 ±0.24 mm in CTRL, single and double CPPU applications, respectively. Cluster length and gs remained comparable across treatments. The number of CPPU applications did not affect berry Ca content (0.84 ±0.08 –single- and 0.85 ±0.03 mg berry-1 -double), whereas BSN incidence was significantly higher (2.63 ±0.33a) in the double CPPU applications than single (1.29 ±0.18b) and comparable to CTRL (1.75 ±0.24ab), leaving some open questions.

Based on the significant effect of VPD on berry Ca content (0.39 ±0.04 –bagged-, 1.81 ±0.84 mg berry-1 -CTRL), the use of management options (i.e. training systems, plant distances, covering, canopy manipulation) to increase Ca accumulation is discussed as alternative to chemical spray.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Antonio Carlomagno, Giuseppe Montanaro*, Giuseppe Flores, Vitale Nuzzo

1 DiCEM – Università Degli Studi della Basilicata, Via dell’Ateneo Lucano 10, Potenza

Contact the author*

Keywords

PGRs, hormones, cytokinin, pre-anthesis, Vitis vinifera L..

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Texas terroir: gis characterization of the texas high plains ava

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region.

Phenolic extraction during fermentation as affected by ripeness level of Syrah/R99 grapes

L’extraction phénolique au cours de la fermentation à partir de vendanges de différents degrees de maturité du cépage Syrah/R99 a été etudiée. Cette travail fait parti d’un projet focalisé sur la qualité du raisin et des vins obtenus au cours du millésime 2002. Les vignes sont situées à Stellenbosch (Afrique du Sud) sur un sol Glenrose

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.