terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

Abstract

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.

Preliminary results showed a significant effect of CPPU on stem diameter when compared to that in untreated being 5.49 ±0.22 SE, 6.05 ±0.20 and 6.17 ±0.24 mm in CTRL, single and double CPPU applications, respectively. Cluster length and gs remained comparable across treatments. The number of CPPU applications did not affect berry Ca content (0.84 ±0.08 –single- and 0.85 ±0.03 mg berry-1 -double), whereas BSN incidence was significantly higher (2.63 ±0.33a) in the double CPPU applications than single (1.29 ±0.18b) and comparable to CTRL (1.75 ±0.24ab), leaving some open questions.

Based on the significant effect of VPD on berry Ca content (0.39 ±0.04 –bagged-, 1.81 ±0.84 mg berry-1 -CTRL), the use of management options (i.e. training systems, plant distances, covering, canopy manipulation) to increase Ca accumulation is discussed as alternative to chemical spray.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Antonio Carlomagno, Giuseppe Montanaro*, Giuseppe Flores, Vitale Nuzzo

1 DiCEM – Università Degli Studi della Basilicata, Via dell’Ateneo Lucano 10, Potenza

Contact the author*

Keywords

PGRs, hormones, cytokinin, pre-anthesis, Vitis vinifera L..

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.