terclim by ICS banner
IVES 9 IVES Conference Series 9 Application of satellite-derived vegetation indices for frost damage detection in grapevines

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Abstract

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region. We compared growers’ data to time-series data of each index to assess how quickly satellite-derived VIs could detect changes in vegetation following the frost. We also used VIs to identify which varieties sustained the least amount of damage within an individual vineyard and compared these to grower-reported metrics. All indices showed vegetation decline after the frost, but index performance differed spatially within each vineyard. NDVI and EVI had higher sensitivity to freeze damage detection and time-series analyses showed a general delay in all indices for detecting vegetation changes following the frost. Studies to link other abiotic stress responses to hyperspectral signatures are ongoing with the goal of utilizing space-based imagery for evaluating historical impacts of climate stress and building prediction models for future climate resiliency.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Faith Twinamaani1, Kathleen Kanaley2, Katie Gold2, Jason P Londo1

1 School of Integrative Plant Science, Horticulture section. Cornell University, Cornell Agritech, Geneva, NY, USA
2 School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology section, Cornell University, Cornell Agritech, Geneva, NY, USA

Contact the author*

Keywords

Remote sensing, Frost damage, NDVI, Satellite-based phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines.