terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Abstract

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide. Notably, samples treated 4-5 times displayed a broader distribution of toxicological parameters, suggesting a heightened need to manage fungicide applications to reduce selection pressure. In conclusion, oospore assays proved valuable not only for detecting the overall sensitivity profile of populations but also for quantifying resistant individuals within them, enabling a better identification of critical factors affecting zoxamide sensitivity and highlighting the need for improved management practices in a precision agriculture context.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mattia Peracchi1*, Beatrice Lecchi1, Giuliana Maddalena1, Silvia Laura Toffolatti1

1 Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali – DISAA, Via Celoria 2, 20133 Milano2

Contact the author*

Keywords

plant disease, integrated pest management, disease control, fungicide resistance

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.