terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Abstract

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide. Notably, samples treated 4-5 times displayed a broader distribution of toxicological parameters, suggesting a heightened need to manage fungicide applications to reduce selection pressure. In conclusion, oospore assays proved valuable not only for detecting the overall sensitivity profile of populations but also for quantifying resistant individuals within them, enabling a better identification of critical factors affecting zoxamide sensitivity and highlighting the need for improved management practices in a precision agriculture context.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mattia Peracchi1*, Beatrice Lecchi1, Giuliana Maddalena1, Silvia Laura Toffolatti1

1 Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali – DISAA, Via Celoria 2, 20133 Milano2

Contact the author*

Keywords

plant disease, integrated pest management, disease control, fungicide resistance

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Pharmacological basis of the J-shaped curve in biological effects of wine

The classical pharmacological model assumes that the effect of a drug is proportional to the fraction of receptors occupied by the drug. In the simplest circumstances, the relationship between dose of a drug and response, when plotted on a logarithmic scale for drug concentration, is described by a sigmoidal curve. It presumes the existence of a threshold dose, below which no biological effect appears, and a maximal response in the form of a plateau, when a further increase in the dose of drug has no effect.

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).