terclim by ICS banner
IVES 9 IVES Conference Series 9 Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Abstract

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content. Equal irrigation was applied to all treatments, at 80% of crop evapotranspiration. Canopy size was measured as fractional cover using UAV-sensed imagery, and yield was mapped spatially with a yield monitor mounted on a harvester. Fractional cover values were larger in vines subjected to partial rootzone drying, while there were no differences between vines receiving conventional irrigation and subsurface irrigation under the vine row. Yield was increased up to 70 % for vines under partial rootzone drying compared to vines receiving conventional drip and under-the-vine subsurface irrigation. A significant increase in water use efficiency was achieved by combining subsurface irrigation and re-locating the drip lines to the interrow spaces, also suggesting treatment-induced modifications to root distribution.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Previtali1*, Jack Mezger1, Mahyar Aboutalebi1, Luis Sanchez1, Nick Dokoozlian1

1 Winegrowing Research, E. & J. Gallo Winery, Modesto, 95354 CA

Contact the author*

Keywords

canopy size, irrigation techniques, partial rootzone drying, remote sensing, subsurface irrigation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

Exploring the impact of different closures on tannin evolutions by using metabolomic approach

Condensed tannins (CTs), polymers of flavan-3-ols, are a class of polyphenolic compounds that play a significant role in the organoleptic qualities of red wines, particularly influencing color, astringency and bitterness. These properties are highly dependent on size and structure of these compounds.

The evolution of italian vine nursery production over the past 30 years

Italy has a long history of viticulture and has become one of the world’s leading producers of vine propagation material. The Italian vine nursery industry is today highly qualified and has become highly competitive on a global scale. The quality of the material is guaranteed by compliance with European Union regulations, which have been in force since the second half of the 20th century and have subsequently been supplemented and updated.

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes.

Holistic characterization of Sangiovese clones 

Sangiovese is one of Italy’s most cultivated grape varieties, and currently, over 130 different clones are registered in the national register of grape varieties. However, despite the sangiovese genome having been re-sequenced, limited molecular and genomic information is still available for this cultivar. The present study investigates the complexity of genotype-environment interactions of ten different Sangiovese clones, cultivated in the Chianti Rufina DOCG district over five consecutive vintages (2016-2020).