terclim by ICS banner
IVES 9 IVES Conference Series 9 Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Abstract

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties. The onset of visible browning of rachis was quantified with ImageJ software analysis in six different table grape varieties (red and white). The varieties investigated are novel table grapes obtained in an ongoing breeding program at CREA-VE in Southern Italy. After harvesting, the bunches were packed in cardboard boxes and stored for two weeks at 2°C with 95% relative humidity to evaluate the shelf-life. The berries were not removed from the grape bunch to follow the onset of browning on the same bunches. Anyway, due to differences in cluster and berry size, the internal area of the rachides was not always visible. Therefore, changes were followed in the apical portion of the rachides. A Specim IQ camera was employed for image detection in the laboratory and the Specim IQ Studio software was used to detect Areas Of Interest (AOIs). Differences in both the visible and Near Infra-Red (NIR) spectral regions were detected before the onset of browning of the rachides. It was possible to observe different changes in the spectral profiles among the varieties.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Teodora Basile1*, Carlo Bergamini1, Lucia Rosaria Forleo1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Antonio Domenico Marsico1, Rocco Perniola1, Luca Nerva2, Walter Chitarra2, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

Vitis vinifera, postharvest, image analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Impact of soil characteristics on grape composition of Tempranillo variety under different weather conditions in Rioja DOCa (Spain)

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.