OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

Abstract

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified. 

A synthetic grape juice medium fermented by the yeast strain was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa peptidic fractions obtained at saturation degrees of 0 %-20 %, 20 %-40 % and 40 %-60 %, inhibited only the growth of O. oeni in vivo but not its ability to consume L-malic acid. The 5–10 kDa peptidic fraction recovered at a saturation degree of 60 %–80 % was the only one that inhibited both the bacterial growth and the malate consumption. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7 in a cell-free enzymatic extract prepared from the same bacterial strain. Therefore, it was further purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro at the same pH range were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. 

The sequencing revealed nine peptides originating from eight proteins of S.cerevisiae that play diverse vital roles in yeast cells. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were considered to contribute the most to the MLF inhibition. However, it is likely that one or more of the nine peptides have worked synergistically to inhibit MLF. In vivo, they are supposed to enter the bacterial cytoplasm and inhibit the malolactic enzyme by mechanisms yet to be identified. 

These results suggest that the 5-10 kDa fraction recovered at a saturation degree of 60 %-80 % contained at least two categories of peptides; the ones responsible for the bacterial growth inhibition and those responsible for the malate consumption inhibition. Whereas the fractions recovered between 0 % and 60 % contained only peptides that inhibited the bacterial growth.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nancy Nehme, Ziad Rizk, Youssef El Rayess, Chantal Ghanem, Florence Mathieu, Patricia Taillandier , Nancy Nehme

Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn, Fanar- Lebanon 
Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France 

Contact the author

Keywords

antibacterial yeast peptides, Wtm2p, Utr2p, GAPDH 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Terroir in Slovak viticulture area

Terroir method has been used for assessment of growing site in the world for years. In Slovakia actually regionalisation is used as the similar method which does not cover all the elements of wine quality evaluation however.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

From the “climats de Bourgogne” to the terroir in bottles

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs.

Barbera d’Asti: the characterization of the vineyard sites

[English version below]

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.