Terroir 2016 banner
IVES 9 IVES Conference Series 9 The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Abstract

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic. This study examines differences in the soil properties and elemental chemistry of the soil parent materials at various vineyards to document their effect on wine chemistry. The physical characteristics of soils from all the three parent materials indicate: they are old (>50,000 years) based on their high clay content, low cation exchange capacity, red colors, and high Fe and Al content. In my study region, volcanic and marine sediment soils are more developed with slightly lower acidity than the loess/volcanic soils. A new finding for this region is the presence of pisolites (Fe/Mg concretions) in the volcanic and the loess/volcanic soils, but absent in the marine sediment soils. Volcanic soils have the highest P, S, Fe, Co, Mn, and V concentrations and the lowest As and Sr values.

Marine sediment soils have higher Cl and Sr and lower P, Co, Mn, Ba, and V concentrations than volcanic soils. Loess soils have the highest values of K and Mg and are similar to volcanic soils with higher P and V values and similar to marine sediment soils with higher Sr values. The main elements found to be significant in determining one parent material from another are V and Mn (volcanic soils), Mg and K (loess soils), and Sr (marine sediment or loess soils). Sr is slightly higher in grape juice and wine from vines grown on marine sediment parent material compared to volcanic and loess parent material, whereas Mn is higher in the juice and wine from grapes grown in volcanic parent material. P, S, Fe, Co, V, Cl, Ba, Mg, and K did not maintain their relative concentration levels from soil to grape juice to wine. The principal component analysis shows that soil and wine chemistry differs between parent material, but is inconclusive for grape juice chemistry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Kathryn Nora Barnard (1), Scott F. Burns (1)

(1) Department of Geology, Portland State University, 1825 SW Broadway Avenue, Portland, Oregon., USA

Contact the author

Keywords

Pinot Noir, ICP-MS/AES, particle size, cation exchange capacity, X-ray fluorescence, clay mineralogy, grape juice chemistry, wine chemistry, soil chemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector.

Metodología para la zonificación de áreas vitícolas: aplicación en un area modelo del Penedés

Se propone una metodología para la zonificación del viñedo, a partir de las características climáticas, edáficas y geomorfológicas, en una área de 3700 ha del Penedés

Root water uptake patterns in rootstock-scion interactions influence grape water use strategies in a Mediterranean vineyard

Increasing drought is the most important impact of the ongoing climate change in the Mediterranean Basin, and it is predicted to result in productivity decreases and changes in grape quality.

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.