Terroir 2016 banner
IVES 9 IVES Conference Series 9 The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Abstract

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic. This study examines differences in the soil properties and elemental chemistry of the soil parent materials at various vineyards to document their effect on wine chemistry. The physical characteristics of soils from all the three parent materials indicate: they are old (>50,000 years) based on their high clay content, low cation exchange capacity, red colors, and high Fe and Al content. In my study region, volcanic and marine sediment soils are more developed with slightly lower acidity than the loess/volcanic soils. A new finding for this region is the presence of pisolites (Fe/Mg concretions) in the volcanic and the loess/volcanic soils, but absent in the marine sediment soils. Volcanic soils have the highest P, S, Fe, Co, Mn, and V concentrations and the lowest As and Sr values.

Marine sediment soils have higher Cl and Sr and lower P, Co, Mn, Ba, and V concentrations than volcanic soils. Loess soils have the highest values of K and Mg and are similar to volcanic soils with higher P and V values and similar to marine sediment soils with higher Sr values. The main elements found to be significant in determining one parent material from another are V and Mn (volcanic soils), Mg and K (loess soils), and Sr (marine sediment or loess soils). Sr is slightly higher in grape juice and wine from vines grown on marine sediment parent material compared to volcanic and loess parent material, whereas Mn is higher in the juice and wine from grapes grown in volcanic parent material. P, S, Fe, Co, V, Cl, Ba, Mg, and K did not maintain their relative concentration levels from soil to grape juice to wine. The principal component analysis shows that soil and wine chemistry differs between parent material, but is inconclusive for grape juice chemistry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Kathryn Nora Barnard (1), Scott F. Burns (1)

(1) Department of Geology, Portland State University, 1825 SW Broadway Avenue, Portland, Oregon., USA

Contact the author

Keywords

Pinot Noir, ICP-MS/AES, particle size, cation exchange capacity, X-ray fluorescence, clay mineralogy, grape juice chemistry, wine chemistry, soil chemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Impact of high temperatures on phenolic profile of Babić grapes

Babić is a Croatian native grapevine variety grown in the Coastal region, mainly in the Šibenik and Primošten areas, famous for high quality red wines. The region is known for its warm Mediterranean climate and karst relief. Vineyards are found on the hillsides of varying slopes and exposition usually giving low yields of exceptional quality.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.