Terroir 2016 banner
IVES 9 IVES Conference Series 9 The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Abstract

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic. This study examines differences in the soil properties and elemental chemistry of the soil parent materials at various vineyards to document their effect on wine chemistry. The physical characteristics of soils from all the three parent materials indicate: they are old (>50,000 years) based on their high clay content, low cation exchange capacity, red colors, and high Fe and Al content. In my study region, volcanic and marine sediment soils are more developed with slightly lower acidity than the loess/volcanic soils. A new finding for this region is the presence of pisolites (Fe/Mg concretions) in the volcanic and the loess/volcanic soils, but absent in the marine sediment soils. Volcanic soils have the highest P, S, Fe, Co, Mn, and V concentrations and the lowest As and Sr values.

Marine sediment soils have higher Cl and Sr and lower P, Co, Mn, Ba, and V concentrations than volcanic soils. Loess soils have the highest values of K and Mg and are similar to volcanic soils with higher P and V values and similar to marine sediment soils with higher Sr values. The main elements found to be significant in determining one parent material from another are V and Mn (volcanic soils), Mg and K (loess soils), and Sr (marine sediment or loess soils). Sr is slightly higher in grape juice and wine from vines grown on marine sediment parent material compared to volcanic and loess parent material, whereas Mn is higher in the juice and wine from grapes grown in volcanic parent material. P, S, Fe, Co, V, Cl, Ba, Mg, and K did not maintain their relative concentration levels from soil to grape juice to wine. The principal component analysis shows that soil and wine chemistry differs between parent material, but is inconclusive for grape juice chemistry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Kathryn Nora Barnard (1), Scott F. Burns (1)

(1) Department of Geology, Portland State University, 1825 SW Broadway Avenue, Portland, Oregon., USA

Contact the author

Keywords

Pinot Noir, ICP-MS/AES, particle size, cation exchange capacity, X-ray fluorescence, clay mineralogy, grape juice chemistry, wine chemistry, soil chemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as
well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced.

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

The composition in condensed tannins of the grape berries is essential for the quality of the harvest. Proanthocyanidins have a significant influence on the organoleptic properties of the red wines