Terroir 2016 banner
IVES 9 IVES Conference Series 9 The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Abstract

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic. This study examines differences in the soil properties and elemental chemistry of the soil parent materials at various vineyards to document their effect on wine chemistry. The physical characteristics of soils from all the three parent materials indicate: they are old (>50,000 years) based on their high clay content, low cation exchange capacity, red colors, and high Fe and Al content. In my study region, volcanic and marine sediment soils are more developed with slightly lower acidity than the loess/volcanic soils. A new finding for this region is the presence of pisolites (Fe/Mg concretions) in the volcanic and the loess/volcanic soils, but absent in the marine sediment soils. Volcanic soils have the highest P, S, Fe, Co, Mn, and V concentrations and the lowest As and Sr values.

Marine sediment soils have higher Cl and Sr and lower P, Co, Mn, Ba, and V concentrations than volcanic soils. Loess soils have the highest values of K and Mg and are similar to volcanic soils with higher P and V values and similar to marine sediment soils with higher Sr values. The main elements found to be significant in determining one parent material from another are V and Mn (volcanic soils), Mg and K (loess soils), and Sr (marine sediment or loess soils). Sr is slightly higher in grape juice and wine from vines grown on marine sediment parent material compared to volcanic and loess parent material, whereas Mn is higher in the juice and wine from grapes grown in volcanic parent material. P, S, Fe, Co, V, Cl, Ba, Mg, and K did not maintain their relative concentration levels from soil to grape juice to wine. The principal component analysis shows that soil and wine chemistry differs between parent material, but is inconclusive for grape juice chemistry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Kathryn Nora Barnard (1), Scott F. Burns (1)

(1) Department of Geology, Portland State University, 1825 SW Broadway Avenue, Portland, Oregon., USA

Contact the author

Keywords

Pinot Noir, ICP-MS/AES, particle size, cation exchange capacity, X-ray fluorescence, clay mineralogy, grape juice chemistry, wine chemistry, soil chemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Influence of the different cork stoppers and sulfur dose in champagne quality

As is well known, Champagne is a product of the highest quality recognized in the international market. Champagne is a type of sparkling wine made in the Champagne region

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.