OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of cell-cell contact on yeast interactions and exo-metabolome

Influence of cell-cell contact on yeast interactions and exo-metabolome

Abstract

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used. Thus, S. cerevisiae/L. thermotolerans couple was used to unravel interactions between these two species during alcoholic fermentation. Thanks to a modified S. cerevisiae strain expressing a GFP allowing discrimination between yeast populations, both yeast viability was monitored by flow cytometry in pure and sequential fermentations of grape must with or without cell-cell contact. This reveal a decrease in cell viability for S. cerevisiae in both conditions with a greater decrease in case of cell-cell contact. Investigating the nature of the interactions, our results demonstrate a competition between species for nitrogen compounds, oxygen and for the first time a competition for must sterols. Volatile compounds analysis revealed changes in sequential fermentations compared to pure fermentations and showed also that cell-cell contact modify yeast metabolism since the volatile compound profile was significantly different from sequential fermentation without cell-cell contact. Yeast metabolism modifications associated with cell-cell contact were confirmed further by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show for the first time a specific metabolite production and quantitative metabolite changes linked to each fermentation condition. This study shows that cell-cell contact not only impact cell viability as already reported but deeply changes the yeast metabolism.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Petitgonnet, Géraldine L.Klein, Chloé Roullier-Gall, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Diane Julien-David, Hervé Alexandre

Helmholtz Zentrum Muenchen, Research unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany 
Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354 Freising, Germany 
Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain 
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Contact the author

Keywords

Interactions, Yeast, Flow cytometry, Exo-metabolome 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

An online training tool for wine professionals around the world: from responsible service to a sustainable consumption of wine

Most consumers enjoy wine in moderation, however, there remains a minority that may develop risky drinking habits, potentially harming themselves and those around them. For the last fifteen years, a prime objective of the wine in moderation programme has been to educate and empower the wine sector and now for the first time, a central education tool has been developed, integrating the topic of moderate consumption horizontally in all wine activities. The entire wine value chain – from the producer to the salesperson to the restaurant service staff – can contribute to reduce harmful consumption and encourage responsible drinking patterns.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

Étude de la flore levurienne de différents terroirs alsaciens

L’utilisation de levures sélectionnées est généralement considérée comme le moyen d’éviter les problèmes fermentaires. Néanmoins de nombreux viticulteurs pensent que ces levures sont à l’origine d’une standardisation des vins et militent pour le respect d’une flore indigène (Bourguignon, 1992).

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.