OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Abstract

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare. 

The aim of this study was to evaluate the bioprotection efficiency of non-Saccharomyces yeasts as an alternative to the antimicrobial effect of SO2. Experiments at different scales (winery, semi-industrial and laboratory) were implemented during two consecutive vintages. Three different treatments: without SO2, with SO2 and bioprotection (mix of Torulaspora delbrueckii (Td) and Metchnikowia pulcherrima (Mp)) were compared. Population dynamics of targeted microorganisms (Td, Mp, acetic acid and lactic acid bacteria and Hanseniaspora spp.) were monitored by qPCR throughout the pre-fermentary stages and the alcoholic fermentation. In a second step, biodiversity of the fungi community was evaluated by high-throughput 18S sequencing using the Illumina MiSeq. qPCR data confirmed that the implantation of the bioprotection non-Saccharomyces was effective in all treatments and no significant effect on Hanseniaspora spp. population was found. However, a negative effect on the population levels of acetic acid bacteria was showned during the prefermentary stages, higher than sulfiting. Regarding the diversity indices, lower values were obtained for the bioprotection modalities compared with the others, which correlates well with the population dynamics observed previously. Bioprotective cultures seem to represent a promising alternative to SO2 for niche occupation during the early stage of the winemaking process.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sara Windholtz (1), Laura Farris (1,2), Emmanuel Vinsonneau (3), Stéphane Becquet (4), Soizic Lacampagne (1), Joana Coulon (5), Cécile Thibon (1), Isabelle Masneuf-Pomarède (1,2)

1. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine, France 
3. IFV, Pôle Bordeaux-Aquitaine, Blanquefort, France 
4. SVBNA, Montagne, France 
5. BioLaffort, Bordeaux, France 

Contact the author

Keywords

sulfites, bioprotection, non-Saccharomyces, microbial community

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Intelligent use of ethanol for the direct quantitative determination of volatile compounds in spirit drinks

The quality of any alcoholic beverage depends on many parameters, such as cultivars, harvesting time, fermentation, distillation technology used, quality and type of wooden barrels (in case of matured drinks), etc.; however, the most important factor in their classification is content of volatile compounds.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.