OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Abstract

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare. 

The aim of this study was to evaluate the bioprotection efficiency of non-Saccharomyces yeasts as an alternative to the antimicrobial effect of SO2. Experiments at different scales (winery, semi-industrial and laboratory) were implemented during two consecutive vintages. Three different treatments: without SO2, with SO2 and bioprotection (mix of Torulaspora delbrueckii (Td) and Metchnikowia pulcherrima (Mp)) were compared. Population dynamics of targeted microorganisms (Td, Mp, acetic acid and lactic acid bacteria and Hanseniaspora spp.) were monitored by qPCR throughout the pre-fermentary stages and the alcoholic fermentation. In a second step, biodiversity of the fungi community was evaluated by high-throughput 18S sequencing using the Illumina MiSeq. qPCR data confirmed that the implantation of the bioprotection non-Saccharomyces was effective in all treatments and no significant effect on Hanseniaspora spp. population was found. However, a negative effect on the population levels of acetic acid bacteria was showned during the prefermentary stages, higher than sulfiting. Regarding the diversity indices, lower values were obtained for the bioprotection modalities compared with the others, which correlates well with the population dynamics observed previously. Bioprotective cultures seem to represent a promising alternative to SO2 for niche occupation during the early stage of the winemaking process.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sara Windholtz (1), Laura Farris (1,2), Emmanuel Vinsonneau (3), Stéphane Becquet (4), Soizic Lacampagne (1), Joana Coulon (5), Cécile Thibon (1), Isabelle Masneuf-Pomarède (1,2)

1. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine, France 
3. IFV, Pôle Bordeaux-Aquitaine, Blanquefort, France 
4. SVBNA, Montagne, France 
5. BioLaffort, Bordeaux, France 

Contact the author

Keywords

sulfites, bioprotection, non-Saccharomyces, microbial community

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.