OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Abstract

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare. 

The aim of this study was to evaluate the bioprotection efficiency of non-Saccharomyces yeasts as an alternative to the antimicrobial effect of SO2. Experiments at different scales (winery, semi-industrial and laboratory) were implemented during two consecutive vintages. Three different treatments: without SO2, with SO2 and bioprotection (mix of Torulaspora delbrueckii (Td) and Metchnikowia pulcherrima (Mp)) were compared. Population dynamics of targeted microorganisms (Td, Mp, acetic acid and lactic acid bacteria and Hanseniaspora spp.) were monitored by qPCR throughout the pre-fermentary stages and the alcoholic fermentation. In a second step, biodiversity of the fungi community was evaluated by high-throughput 18S sequencing using the Illumina MiSeq. qPCR data confirmed that the implantation of the bioprotection non-Saccharomyces was effective in all treatments and no significant effect on Hanseniaspora spp. population was found. However, a negative effect on the population levels of acetic acid bacteria was showned during the prefermentary stages, higher than sulfiting. Regarding the diversity indices, lower values were obtained for the bioprotection modalities compared with the others, which correlates well with the population dynamics observed previously. Bioprotective cultures seem to represent a promising alternative to SO2 for niche occupation during the early stage of the winemaking process.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sara Windholtz (1), Laura Farris (1,2), Emmanuel Vinsonneau (3), Stéphane Becquet (4), Soizic Lacampagne (1), Joana Coulon (5), Cécile Thibon (1), Isabelle Masneuf-Pomarède (1,2)

1. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine, France 
3. IFV, Pôle Bordeaux-Aquitaine, Blanquefort, France 
4. SVBNA, Montagne, France 
5. BioLaffort, Bordeaux, France 

Contact the author

Keywords

sulfites, bioprotection, non-Saccharomyces, microbial community

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

L’objectif de cette recherche a été de déterminer les effets de l’enherbement dans le microclimat de la vigne. On a comparé cinq couvertures de cycle végétatif différent en ce qui concerne l’entretien du sol sans culture par application d’herbicides. L’étude a été developpée dans un vignoble cv. Malbec conduit en haute espalier, situé en a terroir á Agrelo, Luján de Cuyo, Mendoza, Argentine. On a déterminé des paramètres micro climatiques:

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.