OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Abstract

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare. 

The aim of this study was to evaluate the bioprotection efficiency of non-Saccharomyces yeasts as an alternative to the antimicrobial effect of SO2. Experiments at different scales (winery, semi-industrial and laboratory) were implemented during two consecutive vintages. Three different treatments: without SO2, with SO2 and bioprotection (mix of Torulaspora delbrueckii (Td) and Metchnikowia pulcherrima (Mp)) were compared. Population dynamics of targeted microorganisms (Td, Mp, acetic acid and lactic acid bacteria and Hanseniaspora spp.) were monitored by qPCR throughout the pre-fermentary stages and the alcoholic fermentation. In a second step, biodiversity of the fungi community was evaluated by high-throughput 18S sequencing using the Illumina MiSeq. qPCR data confirmed that the implantation of the bioprotection non-Saccharomyces was effective in all treatments and no significant effect on Hanseniaspora spp. population was found. However, a negative effect on the population levels of acetic acid bacteria was showned during the prefermentary stages, higher than sulfiting. Regarding the diversity indices, lower values were obtained for the bioprotection modalities compared with the others, which correlates well with the population dynamics observed previously. Bioprotective cultures seem to represent a promising alternative to SO2 for niche occupation during the early stage of the winemaking process.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sara Windholtz (1), Laura Farris (1,2), Emmanuel Vinsonneau (3), Stéphane Becquet (4), Soizic Lacampagne (1), Joana Coulon (5), Cécile Thibon (1), Isabelle Masneuf-Pomarède (1,2)

1. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine, France 
3. IFV, Pôle Bordeaux-Aquitaine, Blanquefort, France 
4. SVBNA, Montagne, France 
5. BioLaffort, Bordeaux, France 

Contact the author

Keywords

sulfites, bioprotection, non-Saccharomyces, microbial community

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Managing nitrogen balance in cover-cropped vineyard

In this audio recording of the IVES science meeting 2022, Thibaut Verdenal (Agroscope, Pully, Switzerland) speaks about managing nitrogen balance in cover-cropped vineyard. This presentation is based on an original article accessible for free on OENO One.

Redwine project: increasing microalgae biomass feedstock by valorising wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.