OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Abstract

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare. 

The aim of this study was to evaluate the bioprotection efficiency of non-Saccharomyces yeasts as an alternative to the antimicrobial effect of SO2. Experiments at different scales (winery, semi-industrial and laboratory) were implemented during two consecutive vintages. Three different treatments: without SO2, with SO2 and bioprotection (mix of Torulaspora delbrueckii (Td) and Metchnikowia pulcherrima (Mp)) were compared. Population dynamics of targeted microorganisms (Td, Mp, acetic acid and lactic acid bacteria and Hanseniaspora spp.) were monitored by qPCR throughout the pre-fermentary stages and the alcoholic fermentation. In a second step, biodiversity of the fungi community was evaluated by high-throughput 18S sequencing using the Illumina MiSeq. qPCR data confirmed that the implantation of the bioprotection non-Saccharomyces was effective in all treatments and no significant effect on Hanseniaspora spp. population was found. However, a negative effect on the population levels of acetic acid bacteria was showned during the prefermentary stages, higher than sulfiting. Regarding the diversity indices, lower values were obtained for the bioprotection modalities compared with the others, which correlates well with the population dynamics observed previously. Bioprotective cultures seem to represent a promising alternative to SO2 for niche occupation during the early stage of the winemaking process.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sara Windholtz (1), Laura Farris (1,2), Emmanuel Vinsonneau (3), Stéphane Becquet (4), Soizic Lacampagne (1), Joana Coulon (5), Cécile Thibon (1), Isabelle Masneuf-Pomarède (1,2)

1. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine, France 
3. IFV, Pôle Bordeaux-Aquitaine, Blanquefort, France 
4. SVBNA, Montagne, France 
5. BioLaffort, Bordeaux, France 

Contact the author

Keywords

sulfites, bioprotection, non-Saccharomyces, microbial community

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of seaweeds extracts applied to grapevine cv Tempranillo

Grapevine is one of the most-frequently phytosanitary treated crop systems. Consequently, restrictions have been applied by the European Commission on the number of pesticide treatments and the maximum quantity of copper fungicides allowed per year. Moreover, there is a need and an increasing demand for more ecological-sustainable agricultural products. Seaweeds are currently used as fertilizers in viticulture, as they have been proven to be beneficial in several ways related to growth and nutrition.

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.