OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Research on the origin and the side effects of chitosan stabilizing properties in wine

Research on the origin and the side effects of chitosan stabilizing properties in wine

Abstract

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species. 

The CHITOWINE project (ANR 17-CE21-0006) is based on the collaboration of three academic partners, a technology transfer unit and an industrial partner. It primarily aims to better define the potential and limitations of fungal chitosan use as an antimicrobial agent in wine. The work will first enable to better define the spectrum of fungal chitosan through the screening of a large microbial collection representative of the inter- and intra-specific diversity of wine ecosystem (more than 200 strains in 17 species of yeasts and bacteria). The chemical characteristics essential to the antiseptic activity of fungal chitosan (degree of acetylation, molecular weight, solubility and charge) and the influence of extrinsic parameters of reaction (pH, temperature, and dose) will be also evaluated. In addition, the physiological effects of chitosan will be sought through biochemical, microscopic and transcriptomic tests, to identify, if possible, the molecular targets of chitosan and to understand the sensitivity differences observed, between inter or intra species and between strains in the same species. Based on these results, improved use recommendation will be proposed and evaluated. Analytical methods to guide chitosan use will be developed and optimized.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marguerite Dols-Lafargue, Margot Paulin, Cécile Miot-Sertier, olivier Claisse, Patricia Ballestra, Warren Albertin-Leguay, Isabelle Masneuf Pomarède, Axel Marchal, Clément Brasselet, Cédric Delattre, Guillaume Pierre, Pascal Dubessay, Christine Gardarin, Philippe Michaud, Thierry Doco, Joana Coulon, Arnaud Massot, Lucie Dutilh, Amélie Vallet-Courbin, Julie Maupeu

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

chitosan, antiseptic, efficiency, side-effects 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Effet de l’ombrage respectif des ceps et des grappes de Muscat sur leurs teneurs en composés volatils libres et glycosyles et en précurseurs d’aromes carotenoïdiques

Le Muscat de Frontignan est bien connu pour ses fortes teneurs en composés terpéniques et par l’odeur florale et fruitée que ces composés confèrent aux vins qui en sont issus (1,2).

Caratterizzazione varietale della CV. Vranac del Montenegro: primi risultati

Questo studio ha permesso di raccogliere alcune informazioni sul profilo chimico della cultivar Vranac coltivata in Montenegro. L’uva ha mostrato di raggiungere un buon accumulo zuccherino

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.