OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Research on the origin and the side effects of chitosan stabilizing properties in wine

Research on the origin and the side effects of chitosan stabilizing properties in wine

Abstract

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species. 

The CHITOWINE project (ANR 17-CE21-0006) is based on the collaboration of three academic partners, a technology transfer unit and an industrial partner. It primarily aims to better define the potential and limitations of fungal chitosan use as an antimicrobial agent in wine. The work will first enable to better define the spectrum of fungal chitosan through the screening of a large microbial collection representative of the inter- and intra-specific diversity of wine ecosystem (more than 200 strains in 17 species of yeasts and bacteria). The chemical characteristics essential to the antiseptic activity of fungal chitosan (degree of acetylation, molecular weight, solubility and charge) and the influence of extrinsic parameters of reaction (pH, temperature, and dose) will be also evaluated. In addition, the physiological effects of chitosan will be sought through biochemical, microscopic and transcriptomic tests, to identify, if possible, the molecular targets of chitosan and to understand the sensitivity differences observed, between inter or intra species and between strains in the same species. Based on these results, improved use recommendation will be proposed and evaluated. Analytical methods to guide chitosan use will be developed and optimized.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marguerite Dols-Lafargue, Margot Paulin, Cécile Miot-Sertier, olivier Claisse, Patricia Ballestra, Warren Albertin-Leguay, Isabelle Masneuf Pomarède, Axel Marchal, Clément Brasselet, Cédric Delattre, Guillaume Pierre, Pascal Dubessay, Christine Gardarin, Philippe Michaud, Thierry Doco, Joana Coulon, Arnaud Massot, Lucie Dutilh, Amélie Vallet-Courbin, Julie Maupeu

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

chitosan, antiseptic, efficiency, side-effects 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo.

Characterization of a strain of Lachancea thermotolerans, microorganism of choice when facing the climatic challenges of the wine sector

Current climatic challenges in the wine sector require innovative solutions to maintain the quality of wines while adapting oenological practices to changing conditions. This article presents the detailed study of a lachancea thermotolerans strain on matrices typical of the French mediterranean area.

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.