OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Research on the origin and the side effects of chitosan stabilizing properties in wine

Research on the origin and the side effects of chitosan stabilizing properties in wine

Abstract

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species. 

The CHITOWINE project (ANR 17-CE21-0006) is based on the collaboration of three academic partners, a technology transfer unit and an industrial partner. It primarily aims to better define the potential and limitations of fungal chitosan use as an antimicrobial agent in wine. The work will first enable to better define the spectrum of fungal chitosan through the screening of a large microbial collection representative of the inter- and intra-specific diversity of wine ecosystem (more than 200 strains in 17 species of yeasts and bacteria). The chemical characteristics essential to the antiseptic activity of fungal chitosan (degree of acetylation, molecular weight, solubility and charge) and the influence of extrinsic parameters of reaction (pH, temperature, and dose) will be also evaluated. In addition, the physiological effects of chitosan will be sought through biochemical, microscopic and transcriptomic tests, to identify, if possible, the molecular targets of chitosan and to understand the sensitivity differences observed, between inter or intra species and between strains in the same species. Based on these results, improved use recommendation will be proposed and evaluated. Analytical methods to guide chitosan use will be developed and optimized.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marguerite Dols-Lafargue, Margot Paulin, Cécile Miot-Sertier, olivier Claisse, Patricia Ballestra, Warren Albertin-Leguay, Isabelle Masneuf Pomarède, Axel Marchal, Clément Brasselet, Cédric Delattre, Guillaume Pierre, Pascal Dubessay, Christine Gardarin, Philippe Michaud, Thierry Doco, Joana Coulon, Arnaud Massot, Lucie Dutilh, Amélie Vallet-Courbin, Julie Maupeu

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

chitosan, antiseptic, efficiency, side-effects 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Vers des systèmes viticoles économes en pesticide. Étude du réseau DEPHY-Vigne

Dans le cadre de TerclimPro 2025, Esther Fouillet a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8318

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Influenza dell’esposizione del vigneto sulla maturazione dell’uva

Lo studio è stato condotto in vigneti commerciali di Vitis vinifera cv Nebbiolo localizzati in Piemonte, Italia del Nord-Ovest, intorno alla sommità di una collina. L’obiettivo dello studio è stato di determinare come l’esposizione del vigneto possa influenzare il comportamento vegetativo della vite, il manifestarsi delle fasi fenologiche, e la cinetica di maturazione dell’uva con particolare riguardo all’accumulo di antociani e flavonoli.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.