OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Research on the origin and the side effects of chitosan stabilizing properties in wine

Research on the origin and the side effects of chitosan stabilizing properties in wine

Abstract

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species. 

The CHITOWINE project (ANR 17-CE21-0006) is based on the collaboration of three academic partners, a technology transfer unit and an industrial partner. It primarily aims to better define the potential and limitations of fungal chitosan use as an antimicrobial agent in wine. The work will first enable to better define the spectrum of fungal chitosan through the screening of a large microbial collection representative of the inter- and intra-specific diversity of wine ecosystem (more than 200 strains in 17 species of yeasts and bacteria). The chemical characteristics essential to the antiseptic activity of fungal chitosan (degree of acetylation, molecular weight, solubility and charge) and the influence of extrinsic parameters of reaction (pH, temperature, and dose) will be also evaluated. In addition, the physiological effects of chitosan will be sought through biochemical, microscopic and transcriptomic tests, to identify, if possible, the molecular targets of chitosan and to understand the sensitivity differences observed, between inter or intra species and between strains in the same species. Based on these results, improved use recommendation will be proposed and evaluated. Analytical methods to guide chitosan use will be developed and optimized.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marguerite Dols-Lafargue, Margot Paulin, Cécile Miot-Sertier, olivier Claisse, Patricia Ballestra, Warren Albertin-Leguay, Isabelle Masneuf Pomarède, Axel Marchal, Clément Brasselet, Cédric Delattre, Guillaume Pierre, Pascal Dubessay, Christine Gardarin, Philippe Michaud, Thierry Doco, Joana Coulon, Arnaud Massot, Lucie Dutilh, Amélie Vallet-Courbin, Julie Maupeu

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

chitosan, antiseptic, efficiency, side-effects 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness

Analysing consumers’ decision-making process for non-alcoholic spirit drinks and dehalcolized aromatized wines 

In recent years, the consumption of alcoholic beverages is changing, driven by evolving consumer preferences and societal trends, including a wave of health consciousness. Among these changes, the emergence and proliferation of nolo (no alcohol/low alcohol) alcoholic beverages have gained significant attention within the industry. Nolo alcohol beverages are produced to emulate the appearance, aroma, and taste of alcoholic beverages, potentially facilitating a sense of social integration when consuming a product that closely resembles alcohol.

Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

The content of this communication arises from the deliberations of a working group mandated within the framework of the INRA-INAO 2000-2003 research convention, which brought together INAO representatives and researchers who had worked on AOCs or PGIs, in disciplines from the sphere of the humanities (consumer science, marketing, rural development) and biotechnical sciences (agronomy, animal production science, technology, biochemistry).

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).