OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

Abstract

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult. 

The skin cell walls of berries play a very important role during the winemaking process as they can form a barrier to release of important flavor compounds, and is a potential adsorption surface. Commercial wineries have observed that polyphenol extraction levels during winemaking may vary based on grape growing region and/or site. Cell wall composition may be one of the important factors influencing this relationship. 

In this work, phenolic extractability of Cabernet Sauvignon from two regions within California (Sonoma and Central Coast) has been studied. The study includes the analysis of phenolic berry composition, wine phenolic content as well as skin cell wall composition of three sites per region. Results showed that berry phenolic content is not directly related to the region were the grapes were grown. Within the same region, sites with high and low phenolic berry amounts were found. Regarding the wines, a relationship between region and phenolic content was found. Wines made from Central Coast grapes presented lower phenolic content than those from Sonoma. In order to understand the connection between wine phenolic content and extractability, skin cell wall material was characterized. Partial least squares (PLS) analysis showed that cellulose and uronic acid content might influence the extractability of phenolics during fermentation.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cristina Medina Plaza, Nick Dokoozlian, Ravi Ponangi, Tom Blair, David Block, Anita Oberholster 

E&J Gallo Winery, 600 Yosemite Blvd, Modesto, CA 95354, USA 
Department of Chemical Engineering. University of California, Davis CA 95616, USA 
Department of Viticulture and Enology. University of California, Davis CA 95616, USA 

Contact the author

Keywords

Extractability, Cell wall, Phenolics, Red wine

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

Lactic acid bacteria: A possible aid to the remediation of smoke taint?

With climate change, the occurrence of wildfires has increased in several viticultural regions of the world. Subsequently, smoke taint has become a major issue, threatening the sustainability of the wine industry.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.