OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

Abstract

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult. 

The skin cell walls of berries play a very important role during the winemaking process as they can form a barrier to release of important flavor compounds, and is a potential adsorption surface. Commercial wineries have observed that polyphenol extraction levels during winemaking may vary based on grape growing region and/or site. Cell wall composition may be one of the important factors influencing this relationship. 

In this work, phenolic extractability of Cabernet Sauvignon from two regions within California (Sonoma and Central Coast) has been studied. The study includes the analysis of phenolic berry composition, wine phenolic content as well as skin cell wall composition of three sites per region. Results showed that berry phenolic content is not directly related to the region were the grapes were grown. Within the same region, sites with high and low phenolic berry amounts were found. Regarding the wines, a relationship between region and phenolic content was found. Wines made from Central Coast grapes presented lower phenolic content than those from Sonoma. In order to understand the connection between wine phenolic content and extractability, skin cell wall material was characterized. Partial least squares (PLS) analysis showed that cellulose and uronic acid content might influence the extractability of phenolics during fermentation.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cristina Medina Plaza, Nick Dokoozlian, Ravi Ponangi, Tom Blair, David Block, Anita Oberholster 

E&J Gallo Winery, 600 Yosemite Blvd, Modesto, CA 95354, USA 
Department of Chemical Engineering. University of California, Davis CA 95616, USA 
Department of Viticulture and Enology. University of California, Davis CA 95616, USA 

Contact the author

Keywords

Extractability, Cell wall, Phenolics, Red wine

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

In vitro tissue culture as a tool for Croatian grapevine germplasm management

In vitro culture makes it possible to carry out specific studies that would not be possible with whole plants grown in the field or in a greenhouse. Cryopreservation allows long-term preservation without metabolic changes in the plant material and cryotherapy can be efficient in virus elimination, which is a major scientific challenge. The preculture media of cryopreservation protocols were evaluated on three Croatian grape varieties with different antioxidants (salicylic acid, ascorbic acid and glutathione). The highest growth in vitro was achieved on the medium with the addition of glutathione and the lowest with the addition of salicylic acid.

Le aree viticole storiche nel mondo: i loro vitigni, la loro protezione e la tipicità dei vini in esse ottenuti

Il tema da trattare si riferisce ai vari ecosistemi viticoli mondiali, ovviamente non facilmente sintetizzabili in una relazione. Sostanzialmente si richiama

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].