OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Abstract

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. 

Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy. 

Thus, in order to develop new methods based on FTIR spectroscopy, this work first sought to follow polyphenols during winemaking in a vineyard of Bordeaux area, through two different vintages, different type of winemaking and grape varieties. For this purpose, tannin concentration was analysed by precipitation with Bovine Serum Albumin assay and Methylcellulose assay. In order to obtain the most complete information, the samples were also analyzed by HPLC, using the phloroglucinolysis reaction to obtain the mean degree of polymerization and indication on galloylation, procyanidin and prodelphinidin ratio. 

The data collected were statistically analyzed by Partial Least Squares regression method for quantification of laboratory-determined polyphenols from FTIR spectra. Cross validation was used to validate the predictive performance of the models. 

Correlations obtained show good results for all parameters studied, with coefficient of determination (r2) for both calibration and cross validation larger than 0.8. This work is the first step for the construction of robust models to quantify different polyphenols parameters during winemaking by FTIR spectroscopy. 

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Miramont, Michaël Jourdes, Torben Selberg, Henrik Vilstrup Juhl, Lars Nørgaard, Pierre-Louis Teissedre

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
USC 1366 INRA, IPB, INRA, ISVV, F-33140 Villenave d’Ornon, France 
FOSS Analytical A/S, DK-3400 Hillerød, Denmark 

Contact the author

Keywords

Polyphenol, Fourier Transform Infrared, Partial Least Squares regression, Spectroscopy 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Grape cane is a viticultural by-product that is currently underused or not used at all. Therefore, it bears a high potential for valorization due to the presence of anti-microbially active stilbenoids, being biologically relevant for plant defense. These compounds are highly interesting for applications in the agricultural sector as well as for the food and feed industry.