OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Abstract

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Based on the tunable diode laser absorption spectroscopy (TDLAS), a diode laser spectrometer (namely, the CO2-DLS) dedicated to monitor gas-phase CO2 in the headspace of champagne glasses was developed [3,4]. The concentration of gas-phase CO2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the first 10 minutes following the action of pouring. Our results show the strong impact of various tasting conditions (such as the volume of wine dispensed, the glass shape, the wine temperature, or the level of effervescence, for example) on the release of gas-phase CO2 above the champagne surface. Moreover, a recent upgrading of the CO2-DLS allowed us to evidence that the concentration of gas-phase CO2 in the headspace of a champagne glass is far from being homogeneous in either space or time, with much higher gas-phase CO2 concentrations close to the wine interface.

references:

[1] G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise, Eur. Phys. J. Spec. Top. 226 (2017) 3–116.
[2] L. Hewson, T. Hollowood, S. Chandra, and J. Hort. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosensory Perception, 2 (2009) 94–107.
[3] A.-L. Moriaux, R. Vallon, C. Cilindre, B. Parvitte, G. Liger-Belair, V. Zeninari, Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines, Sensors Actuators B Chem. 257 (2018) 745–752.
[4] A.-L. Moriaux, R. Vallon, B. Parvitte, V. Zeninari, G. Liger-Belair, C. Cilindre, Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis, Food Chem. 264 (2018) 255–262.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Anne-Laure Moriaux (1), Raphaël Vallon (1), Bertrand Parvitte (1), Virginie Zeninari (1), Guillaume Roffiaen (2), Laurent Panigai (2), Gérard Liger-Belair (1), Clara Cilindre (1) 

(1) Equipe Effervescence, Champagne et Applications (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France. 
(2) Centre Vinicole – Champagne Nicolas Feuillatte, Chouilly, BP210, Epernay, France. 

Contact the author

Keywords

Champagne, CO2, Diode laser spectrometry, Tasting conditions 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

Pedoclimatic comparison of three viticultural areas of Italy devoted to high-quality Aglianico and Cabernet Sauvignon production

Aim: The study aims to show how different pedo-climatic conditions (past, present, and future) in three Italian sites at different latitudes (from center to southern), affect the adaptation of two red grapevine cultivars: Aglianico and Cabernet Sauvignon.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.