OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Abstract

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Based on the tunable diode laser absorption spectroscopy (TDLAS), a diode laser spectrometer (namely, the CO2-DLS) dedicated to monitor gas-phase CO2 in the headspace of champagne glasses was developed [3,4]. The concentration of gas-phase CO2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the first 10 minutes following the action of pouring. Our results show the strong impact of various tasting conditions (such as the volume of wine dispensed, the glass shape, the wine temperature, or the level of effervescence, for example) on the release of gas-phase CO2 above the champagne surface. Moreover, a recent upgrading of the CO2-DLS allowed us to evidence that the concentration of gas-phase CO2 in the headspace of a champagne glass is far from being homogeneous in either space or time, with much higher gas-phase CO2 concentrations close to the wine interface.

references:

[1] G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise, Eur. Phys. J. Spec. Top. 226 (2017) 3–116.
[2] L. Hewson, T. Hollowood, S. Chandra, and J. Hort. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosensory Perception, 2 (2009) 94–107.
[3] A.-L. Moriaux, R. Vallon, C. Cilindre, B. Parvitte, G. Liger-Belair, V. Zeninari, Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines, Sensors Actuators B Chem. 257 (2018) 745–752.
[4] A.-L. Moriaux, R. Vallon, B. Parvitte, V. Zeninari, G. Liger-Belair, C. Cilindre, Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis, Food Chem. 264 (2018) 255–262.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Anne-Laure Moriaux (1), Raphaël Vallon (1), Bertrand Parvitte (1), Virginie Zeninari (1), Guillaume Roffiaen (2), Laurent Panigai (2), Gérard Liger-Belair (1), Clara Cilindre (1) 

(1) Equipe Effervescence, Champagne et Applications (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France. 
(2) Centre Vinicole – Champagne Nicolas Feuillatte, Chouilly, BP210, Epernay, France. 

Contact the author

Keywords

Champagne, CO2, Diode laser spectrometry, Tasting conditions 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Cartes thématiques: applications au vignoble champenois

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.