OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Abstract

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Based on the tunable diode laser absorption spectroscopy (TDLAS), a diode laser spectrometer (namely, the CO2-DLS) dedicated to monitor gas-phase CO2 in the headspace of champagne glasses was developed [3,4]. The concentration of gas-phase CO2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the first 10 minutes following the action of pouring. Our results show the strong impact of various tasting conditions (such as the volume of wine dispensed, the glass shape, the wine temperature, or the level of effervescence, for example) on the release of gas-phase CO2 above the champagne surface. Moreover, a recent upgrading of the CO2-DLS allowed us to evidence that the concentration of gas-phase CO2 in the headspace of a champagne glass is far from being homogeneous in either space or time, with much higher gas-phase CO2 concentrations close to the wine interface.

references:

[1] G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise, Eur. Phys. J. Spec. Top. 226 (2017) 3–116.
[2] L. Hewson, T. Hollowood, S. Chandra, and J. Hort. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosensory Perception, 2 (2009) 94–107.
[3] A.-L. Moriaux, R. Vallon, C. Cilindre, B. Parvitte, G. Liger-Belair, V. Zeninari, Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines, Sensors Actuators B Chem. 257 (2018) 745–752.
[4] A.-L. Moriaux, R. Vallon, B. Parvitte, V. Zeninari, G. Liger-Belair, C. Cilindre, Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis, Food Chem. 264 (2018) 255–262.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Anne-Laure Moriaux (1), Raphaël Vallon (1), Bertrand Parvitte (1), Virginie Zeninari (1), Guillaume Roffiaen (2), Laurent Panigai (2), Gérard Liger-Belair (1), Clara Cilindre (1) 

(1) Equipe Effervescence, Champagne et Applications (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France. 
(2) Centre Vinicole – Champagne Nicolas Feuillatte, Chouilly, BP210, Epernay, France. 

Contact the author

Keywords

Champagne, CO2, Diode laser spectrometry, Tasting conditions 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Fermentations management: tools for the preservation of the wine specificity

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol.

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.