OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Study of the aromatic oxidation markers of Tempranillo long aged wines

Study of the aromatic oxidation markers of Tempranillo long aged wines

Abstract

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished. 

Acknowledgments:

The authors would like to acknowledge the Ministerio of Economía, Industria and Competitividad and the Centro for the Desarrollo Tecnológico Industrial (CDTI) for their financial support, Proyecto VINySOST Programa Estratégico de Consorcios de Investigación Empresarial Nacional 2014 (CIEN) and Rioja Alta S.A. for the wine samples and its contibution.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ana Maria Mislata (1), Miquel Puxeu (1), Enric Nart (1), Elvira Zaldívar (2), Alejandra Ciria (3), 2 Antonio Tomás Palacios-García (2), Julio Sáenz (3), Raul Ferrer-Gallego (1) 

1. Centro Tecnológico del Vino – VITEC -Crtra. Porrera Km 1, 43730 Falset (Tarragona) Spain. 
2. Laboratorios Excell Ibérica S.L., C/ Planillo 12, Pabellón B, Pol. La Portalada II, 26006 Logroño, (La Rioja), Spain. 
3. Rioja Alta S.A., Av. Vizcaya, 8, 26200 Haro(La Rioja), Spain. 

Contact the author

Keywords

Sensory analysis, Odour threshold, Tempranillo, GC-MS 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Typology of Terroirs around the world

It seems implausible that the geographical development of the vineyards could have been affected by a shift in the positions of the Earth’continents

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.