terclim by ICS banner
IVES 9 IVES Conference Series 9 A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Abstract

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

In this synthesis approach, the output of different CO2 enrichment experiments such as greenhouse and growth chamber trials will be compared to open top chamber (OTC) and Free Air Carbon dioxide Enrichment (FACE) studies. Furthermore, the regional climate in which single field studies have been conducted plays a major role in terms of up and down regulation of CO2 induced processes, whereas in open or closed chamber systems a stable but artificial microclimate exists within the chamber.

Due to higher photosynthesis rates under eCO2 mature field grown vines showed higher transport capacity and larger sinks for additional carbohydrates produced under eCO2, thus grapevines increased in vegetative and reproductive growth. During fruit ripening single berry weight, bunch architecture and bunch compactness altered similarly for vines under eCO2 within the field and to a lower extent when it comes to short-term chamber and greenhouse trials. Regarding crop yield, no or little differences occurred for all varieties for the first year of investigation. Usually, higher yield emerged under eCO2 in the following season as explained by the grapevine’s reproductive cycle. Analyses of berries and must resulted mostly in alterations of malic and tartaric acid concentrations under eCO2 and was close linked to berry size. Sugar accumulation in berries depended on climatic factors and differed if vines were grown under warm or cool climate conditions in combination with CO2 enrichment. Elevated CO2 was also des- cribed to modify some berry colour parameters like anthocyanins, but in the end both syntheses were induced – stimulation and inhabitation of anthocyanin accumulation.

Overall, eCO2 resulted in a change of vegetative, generative and qualitative parameters of grapevines compared to an atmospheric CO2 concentration without affecting wine quality in general. Nevertheless, as carbon dioxide is one of many influencing climate factors on fruit and berry development it needs to be discussed within the context of future wine quality.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Yvette Wohlfahrt

Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, carbon dioxide (CO2), grapevine physiology, berry development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.