terclim by ICS banner
IVES 9 IVES Conference Series 9 Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Abstract

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard is critical as well as the knowledge of how each specific cultivars react to it. A multidisciplinary study was carried out to compare the Cabernet Sauvignon and Aglianico, both black grapevine cultivars, responses to different pedoclimatic conditions of southern Italy. The research was conducted in three areas devoted to high-quality wine production of Campania, Molise, and Sicilia regions. This study reports the preliminary results of the Italian National project “Influence of agro-climatic conditions on the microbiome and genetic expression of grapevines for the production of red wines: a multidisciplinary approach (ADAPT)”. In each site, the environmental characteristics were described, and the soils were characterized through a pedological survey. During 2020-2021, soil water content and the principal weather variables (e.g., temperature, rainfall, solar radiation, etc.) have been monitored by means of in situ stations, while plant responses were collected by means of field campaigns (LAI, LWP, grapes composition). The agro-hydrological model SWAP was used to solve the soil water balance in each site and to determine the Crop Water Stress Index (CWSI) from April to October in the years 2020 and 2021. The obtained CWSI index was compared with data collected on plant status (e.g. LWP) and correlated to grapes quality (e.g., sugar content, acidity) in each site. Finally, the potential CWSI of each experimental site was determined on reference and future IPCC climate scenarios RCP 4.5 and RCP 8.5 to classify the attitude to produce plant water stress of each site and the expected future evolution.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eugenia Monaco1, Maurizio Buonanno1, Filippo Ferlito2, Nicolosi Elisabetta3, Angelo Sicilia3, Angela Roberta Lo Piero3, Riccardo Aversano4, Clizia Villano4, Angelita Gambuti4, Raffaele Coppola5 and Antonello Bonfante1

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Portici (NA), Italy
2CREA- Olive, Fruit and Citrus Crops, Acireale (CT), Italy
3Department of Agricultural, Food and Environment, University of Catania, Italy
4Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
5University of Molise, Campobasso, Italy

Contact the author

Keywords

Cabernet sauvignon, Aglianico, CWSI, SWAP, quality

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.