Terroir 2016 banner
IVES 9 IVES Conference Series 9 Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Abstract

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors. Considerable research has been conducted to clarify the evolution pattern of grape phenolic compounds and the role of environmental and viticultural factors that can manipulate their levels at harvest. The accumulation of phenolic compounds in grapes may be influenced by grape variety, environmental conditions and viticultural practices. More notably, the influence of irrigation on the accumulation of anthocyanins in grapes has been treated by several authors reporting an overall positive impact of mild water deficit, attributed to changes in berry skin-to-pulp ratio, modifications in grape microclimate or differences in the partitioning of assimilates among vine organs. Moreover, light environment of the grapes, as affected directly by leaf removal, is reported to modify skin anthocyanin content, profile and extractability. However, under hot climate conditions, increased temperatures of exposed berries may hasten phenolic ripening and decouple skin and seed sensory traits. Concerning berry tannins, reports on the effects of environmental and viticultural conditions are fewer and inconsistent. Moreover, there is limited information available concerning the effects of environmental and viticultural conditions on the structural characteristics of grape proanthocyanidins, such as polymerization, galloylation and subunit composition, which define wine sensory properties.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Stefanos KOUNDOURAS

Laboratory of Viticulture, School of Agriculture, Faculty of Agriculture, Forrestry and Natural Environment, Aristotle University of Thessaloniki, University Campus 541 24 Thessaloniki, Greece

Contact the author

Keywords

grapevine, anthocyanins, tannins, flavan-3-ols, astringency, bitterness, polymerization, irrigation, microclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.