Terroir 2016 banner
IVES 9 IVES Conference Series 9 Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Abstract

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors. Considerable research has been conducted to clarify the evolution pattern of grape phenolic compounds and the role of environmental and viticultural factors that can manipulate their levels at harvest. The accumulation of phenolic compounds in grapes may be influenced by grape variety, environmental conditions and viticultural practices. More notably, the influence of irrigation on the accumulation of anthocyanins in grapes has been treated by several authors reporting an overall positive impact of mild water deficit, attributed to changes in berry skin-to-pulp ratio, modifications in grape microclimate or differences in the partitioning of assimilates among vine organs. Moreover, light environment of the grapes, as affected directly by leaf removal, is reported to modify skin anthocyanin content, profile and extractability. However, under hot climate conditions, increased temperatures of exposed berries may hasten phenolic ripening and decouple skin and seed sensory traits. Concerning berry tannins, reports on the effects of environmental and viticultural conditions are fewer and inconsistent. Moreover, there is limited information available concerning the effects of environmental and viticultural conditions on the structural characteristics of grape proanthocyanidins, such as polymerization, galloylation and subunit composition, which define wine sensory properties.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Stefanos KOUNDOURAS

Laboratory of Viticulture, School of Agriculture, Faculty of Agriculture, Forrestry and Natural Environment, Aristotle University of Thessaloniki, University Campus 541 24 Thessaloniki, Greece

Contact the author

Keywords

grapevine, anthocyanins, tannins, flavan-3-ols, astringency, bitterness, polymerization, irrigation, microclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of these compounds highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and free norisprenoids (2.60 to 11.46 μg/kg FW).

Survey of winegrape irrigation practices in the Sacramento-San Joaquin Valley of California

In California vineyards, irrigation is considered as one of the most important decisions growers will make. Recent research has revealed that decisions of when to begin irrigation and how much water to apply have considerable consequences for final grape quality and hence wine quality. However, it is unclear whether and to what extent the average winegrape grower uses objective data to begin irrigating or to determine the amount of water to apply.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.