Terroir 2016 banner
IVES 9 IVES Conference Series 9 Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Abstract

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors. Considerable research has been conducted to clarify the evolution pattern of grape phenolic compounds and the role of environmental and viticultural factors that can manipulate their levels at harvest. The accumulation of phenolic compounds in grapes may be influenced by grape variety, environmental conditions and viticultural practices. More notably, the influence of irrigation on the accumulation of anthocyanins in grapes has been treated by several authors reporting an overall positive impact of mild water deficit, attributed to changes in berry skin-to-pulp ratio, modifications in grape microclimate or differences in the partitioning of assimilates among vine organs. Moreover, light environment of the grapes, as affected directly by leaf removal, is reported to modify skin anthocyanin content, profile and extractability. However, under hot climate conditions, increased temperatures of exposed berries may hasten phenolic ripening and decouple skin and seed sensory traits. Concerning berry tannins, reports on the effects of environmental and viticultural conditions are fewer and inconsistent. Moreover, there is limited information available concerning the effects of environmental and viticultural conditions on the structural characteristics of grape proanthocyanidins, such as polymerization, galloylation and subunit composition, which define wine sensory properties.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Stefanos KOUNDOURAS

Laboratory of Viticulture, School of Agriculture, Faculty of Agriculture, Forrestry and Natural Environment, Aristotle University of Thessaloniki, University Campus 541 24 Thessaloniki, Greece

Contact the author

Keywords

grapevine, anthocyanins, tannins, flavan-3-ols, astringency, bitterness, polymerization, irrigation, microclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.),

Effect of auxin treatment on delaying maturation of grape cultivars in the Valpolicella viticultural area

The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.