Terroir 2016 banner
IVES 9 IVES Conference Series 9 Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Abstract

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors. Considerable research has been conducted to clarify the evolution pattern of grape phenolic compounds and the role of environmental and viticultural factors that can manipulate their levels at harvest. The accumulation of phenolic compounds in grapes may be influenced by grape variety, environmental conditions and viticultural practices. More notably, the influence of irrigation on the accumulation of anthocyanins in grapes has been treated by several authors reporting an overall positive impact of mild water deficit, attributed to changes in berry skin-to-pulp ratio, modifications in grape microclimate or differences in the partitioning of assimilates among vine organs. Moreover, light environment of the grapes, as affected directly by leaf removal, is reported to modify skin anthocyanin content, profile and extractability. However, under hot climate conditions, increased temperatures of exposed berries may hasten phenolic ripening and decouple skin and seed sensory traits. Concerning berry tannins, reports on the effects of environmental and viticultural conditions are fewer and inconsistent. Moreover, there is limited information available concerning the effects of environmental and viticultural conditions on the structural characteristics of grape proanthocyanidins, such as polymerization, galloylation and subunit composition, which define wine sensory properties.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Stefanos KOUNDOURAS

Laboratory of Viticulture, School of Agriculture, Faculty of Agriculture, Forrestry and Natural Environment, Aristotle University of Thessaloniki, University Campus 541 24 Thessaloniki, Greece

Contact the author

Keywords

grapevine, anthocyanins, tannins, flavan-3-ols, astringency, bitterness, polymerization, irrigation, microclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones.