Terroir 2010 banner
IVES 9 IVES Conference Series 9 Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Abstract

Dividing agrarian exploitations into microfields is a problem that influences the modern viticulture in a very important way. The aim of this work is the study of the influence of Geology and Geomorphology in agricultural structures, and more exactly applied to viticulture microfields, as determining factors in evolution and development of certain Appellation of Origin (AO). The field division of three AO in the Northwest of Spain (Toro, Bierzo, Arribes) is compared. These three regions were chosen because they have similar influence elements.
The Toro AO (total area 76.076,43 ha; vineyard area 4.887,12 ha) is located to the West of Duero river basin and it is formed with limestone and carbonated detritic materials from the tertiary series and with the materials from the glacis and the medium and low terraces of the own river. In this context the altitude difference is small (650-825 m) and the shapes are flat and smooth in the quaternary relieve and undulating in the link tertiary surfaces with slopes under 20%. There are neither rocky outcrops nor stoniness to block the crop technical development.
The Bierzo AO (total area 142.672,08 ha; vineyard area 3.785,33 ha) is located in a sinking intermontane depression basin that is filled up with terraces materials, plioquaternary piedmont which are locally linked through tertiary detritical series with quartzite and schist materials that end in the primary mountainous edges due to basin close. The difference among cotes is important (525-1100 m) and the slopes are very changeable; flat in the alluvials, medium and high in the tertiary relieves and very high in the mountainous ones. Only in the mountainous basin edges there are some zones with rocky outcrops that block the crop technical development.
The Arribes AO (total area 101.969,94 Ha, vineyard area 1.66679 Ha) is located in an erosive surface that includes a whole of deep incisions and canyons of the Duero and its associated systems. In this surface the granite materials and schist, gneiss and quartzite paleozoic materials are predominant. These materials are locally covered with rests of glacis and quaternary materials and these filled up some depressions. The relief is very varied, from soft undulating surfaces in the erosive zone to vertical walls related to the incisions. In the whole AO the rocky outcrops and the stoniness make up or have made up an obstacle to the crop technical development.
Even though in the three AO a selection of the medium size is appreciated, the vineyard medium size is more than two times smaller in Toro AO (2.84) and in Bierzo AO (2.84), but more than five times smaller (5.54) in Arribes AO. On the other hand, while in the Toro AO, the wine-grower can select the better quality zones and zones with a proper structure and a independent of the considered elements, in Bierzo AO and in Arribes AO the vine-growers election possibilities are much lower or there are problems with the slopes which are often in relationships to the soil small effective depth, or if these problems have been eliminated by the effort through centuries the microfields division impede the vineyard crop technical development; the vineyard medium size is more than ten times higher in Toro AO, than in Bierzo AO and Arribes AO.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Vicente GOMEZ-MIGUEL (1), Vicente SOTES (1)

(1) Universidad Politécnica de Madrid (UPM). Avda Complutense s/n. 28040-Madrid, Spain

Contact the author

Keywords

terroir, zoning, landscape, geology, microfield, Appellations of Origin, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.