terclim by ICS banner
IVES 9 IVES Conference Series 9 OTA DEGRADATION BY BACTERIAL LACCASEST

OTA DEGRADATION BY BACTERIAL LACCASEST

Abstract

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degrada-tion, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking. OTA degradation is paramount given that it has been described as human-health harmful according to EFSA.

The work aimed to evaluate the OTA degrading capacity of three heterologous LAB laccases expressed in E. coli. The experimental procedure consisted on testing bacterial laccases from L. lactis, L. paracasei and P. parvulus in acetate buffer pH 4 with or without CuSO4 and OTA in presence and absence of several concentrations of epicatequin and complete polyphenolic extracts from red and white wine as media-tors. Degradation of OTA was followed and quantified by analyzing samples with HPLC-QToF-MS.

According to the results, OTA degradation in the reaction buffer with copper was at least three times higher than without copper. In addition, 0.75 mM epicatequin was the optimum concentration to obtain the highest OTA degradation with L. paracasei laccase (78%). Then, P. parvulus and L. lactis laccases were tested at this concentration, averaging 70% degradation. Finally, mean values of 40% and 10% OTA de-gradation were revealed when using polyphenolic extracts from red and white wine, respectively, for the three laccases. The application of these LAB laccases on OTA degradation in real wine needs to be further explored.

 

1. Fuchs S., et al. (2008). Food Chem Toxicol; 46:1398-1407.
2. Loi M., et al. (2018). Food Control; 90: 401-406.
3. Luz C., et al. (2018). Food Chem Toxicol; 112: 60-66.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Isaac Monroy¹, Isabel Pardo¹, Sergi Ferrer¹, José Pérez-Navarro², Sergio Gómez-Alonso²

1. ENOLAB, Institute BIOTECMED and Microbiology and Ecology Dept, University of Valencia
2. IRICA, University of Castilla-La Mancha

Contact the author*

Keywords

Ochratoxin A reduction, lactic acid bacteria laccases, polyphenolic compounds, redox media-tors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.