Terroir 2016 banner
IVES 9 IVES Conference Series 9 Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Abstract

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment. Given the low knowledge of the effects of different rootstocks in the agronomic behavior of cv. Mencia, an experimental trial was developed in the D.O. Bierzo during the period of 2009-2012, on a vineyard planted in 2002 in Pieros (Leon).

The vines were trained with vertical trellis, by means of bilateral Royat cordon pruning, to 3 two-bud spurs per arm, for a total of 12 buds per vine. Vine distances were of 3.0 m x 1.0 m (3,333 vines/ha) and row orientation is East-NE to West-SW. The rootstocks to study are: 110R, 140Ru, 1103P, 101-14M, 420A, 5BB, 41B, 161-49C, 333EM, SO4. The experimental design consisted of 4 randomized blocks, with an elemental plot of 30 vines.

The results showed a tendency of rootstocks SO4 and 420A to increase grape yield, and 101-14M and 5BB to reduce it, through the variation of number of clusters per vine and cluster weight. The vegetative development was clearly favored by rootstocks 5BB and 1103P, and reduced by 101-14M and 110R, which became the weakest rootstocks, mainly due to the variation of individual shoot vigor. The Ravaz index was higher in 110R, 41B and SO4 and lower in 5BB and 1103P.

The influence of the rootstock varied on several parameters of grape quality, which was partially dependent on the level of vegetative growth and grape yield achieved by each rootstock. Thus, 5BB, 101-14M and 1103P, the less productive rootstocks, increased the sugar concentration, whereas 41B and 110R reduced it. The acidity increased with 110R and 1103P, and was reduced with 333EM and 101-14M, whereas the pH value of 5BB, of highest sugar concentration, stood out from the rest. The tartaric acid in 41B and SO4 was the highest, and decreased in 333EM and 140Ru, whereas the malic acid got the highest values in 5BB and 1103P, the rootstocks of highest vegetative growth, and decreased in 101-14 M, as well as in 41B and 110R, the rootstocks of lower sugar concentration. The potassium concentration clearly increased in 5BB, a rootstock of very low production and high sugar content, and decreased in 41B, the rootstock of lowest sugar concentration, and 101-14M, whereas the total phenols index did not shown statistically significant differences between rootstocks

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Jesús YUSTE (1), Ramón YUSTE (2), María V. ALBURQUERQUE (2)

(1) Instituto Tecnológico Agrario de Castilla y León Ctra. Burgos km 119. 47071 Valladolid, Spain
(2) At present: external viticulture activity

Contact the author

Keywords

acidity, berry, grape yield, pruning weight, sugar

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Delaying grapevine budbreak and/or phenological stages

In the current climatic context, with milder winters leading to earlier budburst in most wine regions, vines are exposed to the risk of spring frosts for a longer period. Depending on the year, frost can lead to yield losses of between 20 and 100 %, jeopardizing the economic survival of wine estates. In addition, by destroying young shoots, spring frosts can impact the following season’s production, by reducing the number of canes available for pruning, for example. Late pruning is one method to combat spring frosts.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

Pacific Northwest wine regions and climates

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia.

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges