Terroir 2016 banner
IVES 9 IVES Conference Series 9 Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Abstract

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment. Given the low knowledge of the effects of different rootstocks in the agronomic behavior of cv. Mencia, an experimental trial was developed in the D.O. Bierzo during the period of 2009-2012, on a vineyard planted in 2002 in Pieros (Leon).

The vines were trained with vertical trellis, by means of bilateral Royat cordon pruning, to 3 two-bud spurs per arm, for a total of 12 buds per vine. Vine distances were of 3.0 m x 1.0 m (3,333 vines/ha) and row orientation is East-NE to West-SW. The rootstocks to study are: 110R, 140Ru, 1103P, 101-14M, 420A, 5BB, 41B, 161-49C, 333EM, SO4. The experimental design consisted of 4 randomized blocks, with an elemental plot of 30 vines.

The results showed a tendency of rootstocks SO4 and 420A to increase grape yield, and 101-14M and 5BB to reduce it, through the variation of number of clusters per vine and cluster weight. The vegetative development was clearly favored by rootstocks 5BB and 1103P, and reduced by 101-14M and 110R, which became the weakest rootstocks, mainly due to the variation of individual shoot vigor. The Ravaz index was higher in 110R, 41B and SO4 and lower in 5BB and 1103P.

The influence of the rootstock varied on several parameters of grape quality, which was partially dependent on the level of vegetative growth and grape yield achieved by each rootstock. Thus, 5BB, 101-14M and 1103P, the less productive rootstocks, increased the sugar concentration, whereas 41B and 110R reduced it. The acidity increased with 110R and 1103P, and was reduced with 333EM and 101-14M, whereas the pH value of 5BB, of highest sugar concentration, stood out from the rest. The tartaric acid in 41B and SO4 was the highest, and decreased in 333EM and 140Ru, whereas the malic acid got the highest values in 5BB and 1103P, the rootstocks of highest vegetative growth, and decreased in 101-14 M, as well as in 41B and 110R, the rootstocks of lower sugar concentration. The potassium concentration clearly increased in 5BB, a rootstock of very low production and high sugar content, and decreased in 41B, the rootstock of lowest sugar concentration, and 101-14M, whereas the total phenols index did not shown statistically significant differences between rootstocks

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Jesús YUSTE (1), Ramón YUSTE (2), María V. ALBURQUERQUE (2)

(1) Instituto Tecnológico Agrario de Castilla y León Ctra. Burgos km 119. 47071 Valladolid, Spain
(2) At present: external viticulture activity

Contact the author

Keywords

acidity, berry, grape yield, pruning weight, sugar

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes).