Terroir 2016 banner
IVES 9 IVES Conference Series 9 Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Abstract

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment. Given the low knowledge of the effects of different rootstocks in the agronomic behavior of cv. Mencia, an experimental trial was developed in the D.O. Bierzo during the period of 2009-2012, on a vineyard planted in 2002 in Pieros (Leon).

The vines were trained with vertical trellis, by means of bilateral Royat cordon pruning, to 3 two-bud spurs per arm, for a total of 12 buds per vine. Vine distances were of 3.0 m x 1.0 m (3,333 vines/ha) and row orientation is East-NE to West-SW. The rootstocks to study are: 110R, 140Ru, 1103P, 101-14M, 420A, 5BB, 41B, 161-49C, 333EM, SO4. The experimental design consisted of 4 randomized blocks, with an elemental plot of 30 vines.

The results showed a tendency of rootstocks SO4 and 420A to increase grape yield, and 101-14M and 5BB to reduce it, through the variation of number of clusters per vine and cluster weight. The vegetative development was clearly favored by rootstocks 5BB and 1103P, and reduced by 101-14M and 110R, which became the weakest rootstocks, mainly due to the variation of individual shoot vigor. The Ravaz index was higher in 110R, 41B and SO4 and lower in 5BB and 1103P.

The influence of the rootstock varied on several parameters of grape quality, which was partially dependent on the level of vegetative growth and grape yield achieved by each rootstock. Thus, 5BB, 101-14M and 1103P, the less productive rootstocks, increased the sugar concentration, whereas 41B and 110R reduced it. The acidity increased with 110R and 1103P, and was reduced with 333EM and 101-14M, whereas the pH value of 5BB, of highest sugar concentration, stood out from the rest. The tartaric acid in 41B and SO4 was the highest, and decreased in 333EM and 140Ru, whereas the malic acid got the highest values in 5BB and 1103P, the rootstocks of highest vegetative growth, and decreased in 101-14 M, as well as in 41B and 110R, the rootstocks of lower sugar concentration. The potassium concentration clearly increased in 5BB, a rootstock of very low production and high sugar content, and decreased in 41B, the rootstock of lowest sugar concentration, and 101-14M, whereas the total phenols index did not shown statistically significant differences between rootstocks

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Jesús YUSTE (1), Ramón YUSTE (2), María V. ALBURQUERQUE (2)

(1) Instituto Tecnológico Agrario de Castilla y León Ctra. Burgos km 119. 47071 Valladolid, Spain
(2) At present: external viticulture activity

Contact the author

Keywords

acidity, berry, grape yield, pruning weight, sugar

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Ultra high pressure liquid chromatography for stilbenes separation and their determination in Burgundy red wines

In this study for the first time, eight natural stilbenes (trans-resveratrol, trans-piceid, cis-piceid, trans-astringin, trans-piceatannol, (+)-trans-s-viniferin, pallidol and hopeaphenol) isolated and purified from Vitis vinifera, were simultaneously separated and analysed within 5 mn by ultra high pressure liquid chromatography coupled with photodiode array detection.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.