Terroir 2016 banner
IVES 9 IVES Conference Series 9 Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Abstract

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment. Given the low knowledge of the effects of different rootstocks in the agronomic behavior of cv. Mencia, an experimental trial was developed in the D.O. Bierzo during the period of 2009-2012, on a vineyard planted in 2002 in Pieros (Leon).

The vines were trained with vertical trellis, by means of bilateral Royat cordon pruning, to 3 two-bud spurs per arm, for a total of 12 buds per vine. Vine distances were of 3.0 m x 1.0 m (3,333 vines/ha) and row orientation is East-NE to West-SW. The rootstocks to study are: 110R, 140Ru, 1103P, 101-14M, 420A, 5BB, 41B, 161-49C, 333EM, SO4. The experimental design consisted of 4 randomized blocks, with an elemental plot of 30 vines.

The results showed a tendency of rootstocks SO4 and 420A to increase grape yield, and 101-14M and 5BB to reduce it, through the variation of number of clusters per vine and cluster weight. The vegetative development was clearly favored by rootstocks 5BB and 1103P, and reduced by 101-14M and 110R, which became the weakest rootstocks, mainly due to the variation of individual shoot vigor. The Ravaz index was higher in 110R, 41B and SO4 and lower in 5BB and 1103P.

The influence of the rootstock varied on several parameters of grape quality, which was partially dependent on the level of vegetative growth and grape yield achieved by each rootstock. Thus, 5BB, 101-14M and 1103P, the less productive rootstocks, increased the sugar concentration, whereas 41B and 110R reduced it. The acidity increased with 110R and 1103P, and was reduced with 333EM and 101-14M, whereas the pH value of 5BB, of highest sugar concentration, stood out from the rest. The tartaric acid in 41B and SO4 was the highest, and decreased in 333EM and 140Ru, whereas the malic acid got the highest values in 5BB and 1103P, the rootstocks of highest vegetative growth, and decreased in 101-14 M, as well as in 41B and 110R, the rootstocks of lower sugar concentration. The potassium concentration clearly increased in 5BB, a rootstock of very low production and high sugar content, and decreased in 41B, the rootstock of lowest sugar concentration, and 101-14M, whereas the total phenols index did not shown statistically significant differences between rootstocks

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Jesús YUSTE (1), Ramón YUSTE (2), María V. ALBURQUERQUE (2)

(1) Instituto Tecnológico Agrario de Castilla y León Ctra. Burgos km 119. 47071 Valladolid, Spain
(2) At present: external viticulture activity

Contact the author

Keywords

acidity, berry, grape yield, pruning weight, sugar

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.

La zonazione viticola e i compiti dell’amministrazione regionale

Solo attraverso un adeguato intervento di estirpazione e reimpianto dei vigneti è possibile preservare, adeguare e valorizzare il patrimonio viticolo e le produzioni che da esso derivano.
Il reimpianto dei vigneti è pertanto da intendersi come una normale pratica agricola, alla pari della rimonta di stalla in campo zootecnico, ma può assumere toni problematici quando, come si verifica adesso in Toscana per una serie di circostanze legate alla profonda trasfor­mazione della viticoltura avvenuta negli ultimi 30 anni, troppi impianti giungono contem­poraneamente a fine ciclo produttivo e devono essere rinnovati.