Terroir 2016 banner
IVES 9 IVES Conference Series 9 Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Abstract

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment. Given the low knowledge of the effects of different rootstocks in the agronomic behavior of cv. Mencia, an experimental trial was developed in the D.O. Bierzo during the period of 2009-2012, on a vineyard planted in 2002 in Pieros (Leon).

The vines were trained with vertical trellis, by means of bilateral Royat cordon pruning, to 3 two-bud spurs per arm, for a total of 12 buds per vine. Vine distances were of 3.0 m x 1.0 m (3,333 vines/ha) and row orientation is East-NE to West-SW. The rootstocks to study are: 110R, 140Ru, 1103P, 101-14M, 420A, 5BB, 41B, 161-49C, 333EM, SO4. The experimental design consisted of 4 randomized blocks, with an elemental plot of 30 vines.

The results showed a tendency of rootstocks SO4 and 420A to increase grape yield, and 101-14M and 5BB to reduce it, through the variation of number of clusters per vine and cluster weight. The vegetative development was clearly favored by rootstocks 5BB and 1103P, and reduced by 101-14M and 110R, which became the weakest rootstocks, mainly due to the variation of individual shoot vigor. The Ravaz index was higher in 110R, 41B and SO4 and lower in 5BB and 1103P.

The influence of the rootstock varied on several parameters of grape quality, which was partially dependent on the level of vegetative growth and grape yield achieved by each rootstock. Thus, 5BB, 101-14M and 1103P, the less productive rootstocks, increased the sugar concentration, whereas 41B and 110R reduced it. The acidity increased with 110R and 1103P, and was reduced with 333EM and 101-14M, whereas the pH value of 5BB, of highest sugar concentration, stood out from the rest. The tartaric acid in 41B and SO4 was the highest, and decreased in 333EM and 140Ru, whereas the malic acid got the highest values in 5BB and 1103P, the rootstocks of highest vegetative growth, and decreased in 101-14 M, as well as in 41B and 110R, the rootstocks of lower sugar concentration. The potassium concentration clearly increased in 5BB, a rootstock of very low production and high sugar content, and decreased in 41B, the rootstock of lowest sugar concentration, and 101-14M, whereas the total phenols index did not shown statistically significant differences between rootstocks

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Jesús YUSTE (1), Ramón YUSTE (2), María V. ALBURQUERQUE (2)

(1) Instituto Tecnológico Agrario de Castilla y León Ctra. Burgos km 119. 47071 Valladolid, Spain
(2) At present: external viticulture activity

Contact the author

Keywords

acidity, berry, grape yield, pruning weight, sugar

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Lactic acid bacteria: A possible aid to the remediation of smoke taint?

With climate change, the occurrence of wildfires has increased in several viticultural regions of the world. Subsequently, smoke taint has become a major issue, threatening the sustainability of the wine industry.

Predictive Breeding: Impact of véraison (onset of ripening) on wine quality

Grapevine breeding focuses on high wine quality and climate-adapted grapevine varieties with fungal disease resistances to be cultivated in a pesticide-reduced and sustainable viticulture.

Evaluation of the efficiency of dialysis membranes in the wine dealcoholization process

The global wine production is continuously evolving to meet the new demands and preferences of consumers. in this evolving scenario, it’s important to determine which trends will be short-lived and which will remain over time. The promotion of healthier habits has encouraged consumers to try to find alternatives with low or no alcohol content. The challenge for the industry is to produce an alcohol-free wine that retains the familiar aromas and mouthfeel of traditional wine but without alcohol. Ethanol is the most abundant compound in wine, excluding water.

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]

La viticulture durable: concept et application aux terroirs viticoles

Evoquer la notion de durabilité pour la vigne, plante multimillénaire, et le vin, tous deux intimement liés aux origines de notre civilisation, peut paraître un non-sens.