Terroir 2016 banner
IVES 9 IVES Conference Series 9 Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Abstract

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country. It is known as a ruby blended, full bodied red wine with fruity and aged character. Vitis vinifera L. Kékfrankos (Blaufränkisch) is the base component of the ‘Egri Bikavér’, beside it is the most abundant red grape cultivar of the region and of Hungary. It is grown in many vineyards along the wine region resulting in different wine quality and style depending on slope, elevation, aspect, soil and microclimatic conditions.

Several attempts using GIS technics have been made recently to characterize the most important growing sites in the wine region concerning topographical, soil and climatic conditions. Data of automatic meteorological weather stations located in the vineyards, E-OBS gridded database and the PRECIS regional climate model was also used to better understand the suitability of the vineyards for Kékfrankos quality wine production.

In the present study, we described with a fine scale measurement the fruit zone microclimate (temperature, relative humidity) in three vineyards differing in their elevation on the emblematic ‘Nagy-Eged hill with EasyLog EL USB-2+ temperature and humidity sensors (Lascar Electronics, UK). The elevation of Nagy-Eged hill lower part [NEL] is 294 m, Nagy-Eged hill middle [NEM] is 332 m and Nagy-Eged hill top [NET] is 482 m above sea level. Measurements were taken in 2015 July-October. Mathematical calculation of multiple comparison, i.e. Marascuillo’s procedure was used to distinguish microclimatic differences among different elevations. Day and night time data were separately analyzed.

Concerning the temperature data of Nagy-Eged Hill, we may suppose that the effect of a thermal belt was the principal factor influencing fruit zone temperature, since the warmest area (especially at night) was the middle part of the hill, although the upper part is far steeper, therefore it could receive more solar radiant heat than the others. Soil is richer in gravels, stones on the top of the hill and in the middle part, but the re-radiation heating effect did not exceed that of thermal belt.
Due to the moving of cooler air masses towards the lower part of a valley and the lower wind speed, the air surrounding the vines gets more humid in most part of the growing season. The advantage of dryer air conditions in the middle and top positions of the hill may be benefited by using environmental friendly cultivation technology with less pesticides.
Climate change is a challenge at the Nagy-Eged Hill not only for temperature increase and water shortage, but also for heavy, irregular precipitation that results in serious erosion problem.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Borbála BÁLO (1), Márta LADÁNYI (2), Nikoletta SZOBONYA (1), Péter BODOR (1),Tamás DEÁK, György Dénes BISZTRAY (1)

(1) Department of Viticulture, Szent István University, Budapest, Hungary
(2) Department of Biometrics and Agricultural Informatics, Szent István University,Budapest, Hungary

Contact the author

Keywords

terroir, slope, fruit zone, temperature, humidity, thermal belt

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.