Terroir 2016 banner
IVES 9 IVES Conference Series 9 Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Abstract

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country. It is known as a ruby blended, full bodied red wine with fruity and aged character. Vitis vinifera L. Kékfrankos (Blaufränkisch) is the base component of the ‘Egri Bikavér’, beside it is the most abundant red grape cultivar of the region and of Hungary. It is grown in many vineyards along the wine region resulting in different wine quality and style depending on slope, elevation, aspect, soil and microclimatic conditions.

Several attempts using GIS technics have been made recently to characterize the most important growing sites in the wine region concerning topographical, soil and climatic conditions. Data of automatic meteorological weather stations located in the vineyards, E-OBS gridded database and the PRECIS regional climate model was also used to better understand the suitability of the vineyards for Kékfrankos quality wine production.

In the present study, we described with a fine scale measurement the fruit zone microclimate (temperature, relative humidity) in three vineyards differing in their elevation on the emblematic ‘Nagy-Eged hill with EasyLog EL USB-2+ temperature and humidity sensors (Lascar Electronics, UK). The elevation of Nagy-Eged hill lower part [NEL] is 294 m, Nagy-Eged hill middle [NEM] is 332 m and Nagy-Eged hill top [NET] is 482 m above sea level. Measurements were taken in 2015 July-October. Mathematical calculation of multiple comparison, i.e. Marascuillo’s procedure was used to distinguish microclimatic differences among different elevations. Day and night time data were separately analyzed.

Concerning the temperature data of Nagy-Eged Hill, we may suppose that the effect of a thermal belt was the principal factor influencing fruit zone temperature, since the warmest area (especially at night) was the middle part of the hill, although the upper part is far steeper, therefore it could receive more solar radiant heat than the others. Soil is richer in gravels, stones on the top of the hill and in the middle part, but the re-radiation heating effect did not exceed that of thermal belt.
Due to the moving of cooler air masses towards the lower part of a valley and the lower wind speed, the air surrounding the vines gets more humid in most part of the growing season. The advantage of dryer air conditions in the middle and top positions of the hill may be benefited by using environmental friendly cultivation technology with less pesticides.
Climate change is a challenge at the Nagy-Eged Hill not only for temperature increase and water shortage, but also for heavy, irregular precipitation that results in serious erosion problem.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Borbála BÁLO (1), Márta LADÁNYI (2), Nikoletta SZOBONYA (1), Péter BODOR (1),Tamás DEÁK, György Dénes BISZTRAY (1)

(1) Department of Viticulture, Szent István University, Budapest, Hungary
(2) Department of Biometrics and Agricultural Informatics, Szent István University,Budapest, Hungary

Contact the author

Keywords

terroir, slope, fruit zone, temperature, humidity, thermal belt

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

A comparative study on physiological responses to drought in wild Vitis species 

The crossings of three wild Vitis species are commonly used as rootstocks in wine production worldwide. Factors such as disease resistance and vigor are most important for their selection.
With climate change extending drought conditions and water limitations, the selection of rootstocks conferring increased tolerance to drought takes on greater importance. Therefore, identifying Vitis species with improved drought tolerance and incorporating them into breeding programs could contribute to more resilient rootstocks under water limiting conditions. Furthermore, those species serve as a valuable resource to increase genetic variability of rootstocks. We hypothesize that species native to drier habitats will exhibit superior physiological performance under drought stress.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry.

Application of regenerative agriculture to viticulture: The REVINE project

Conventional viticulture improved the quality of production, but the economic costs can be unsustainable. Today, producers need to consider consumers’ demands for healthy, eco-friendly products. Institutions promote sustainable agriculture, with regenerative agriculture being the latest generation of methodologies focused on recovering losses and ensuring future sustainability. The revine project studies regenerative agricultural technology applied in mediterranean countries to provide precise indications for soil processing and effective vineyard treatments.

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world