Terroir 2016 banner
IVES 9 IVES Conference Series 9 Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

Abstract

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country. It is known as a ruby blended, full bodied red wine with fruity and aged character. Vitis vinifera L. Kékfrankos (Blaufränkisch) is the base component of the ‘Egri Bikavér’, beside it is the most abundant red grape cultivar of the region and of Hungary. It is grown in many vineyards along the wine region resulting in different wine quality and style depending on slope, elevation, aspect, soil and microclimatic conditions.

Several attempts using GIS technics have been made recently to characterize the most important growing sites in the wine region concerning topographical, soil and climatic conditions. Data of automatic meteorological weather stations located in the vineyards, E-OBS gridded database and the PRECIS regional climate model was also used to better understand the suitability of the vineyards for Kékfrankos quality wine production.

In the present study, we described with a fine scale measurement the fruit zone microclimate (temperature, relative humidity) in three vineyards differing in their elevation on the emblematic ‘Nagy-Eged hill with EasyLog EL USB-2+ temperature and humidity sensors (Lascar Electronics, UK). The elevation of Nagy-Eged hill lower part [NEL] is 294 m, Nagy-Eged hill middle [NEM] is 332 m and Nagy-Eged hill top [NET] is 482 m above sea level. Measurements were taken in 2015 July-October. Mathematical calculation of multiple comparison, i.e. Marascuillo’s procedure was used to distinguish microclimatic differences among different elevations. Day and night time data were separately analyzed.

Concerning the temperature data of Nagy-Eged Hill, we may suppose that the effect of a thermal belt was the principal factor influencing fruit zone temperature, since the warmest area (especially at night) was the middle part of the hill, although the upper part is far steeper, therefore it could receive more solar radiant heat than the others. Soil is richer in gravels, stones on the top of the hill and in the middle part, but the re-radiation heating effect did not exceed that of thermal belt.
Due to the moving of cooler air masses towards the lower part of a valley and the lower wind speed, the air surrounding the vines gets more humid in most part of the growing season. The advantage of dryer air conditions in the middle and top positions of the hill may be benefited by using environmental friendly cultivation technology with less pesticides.
Climate change is a challenge at the Nagy-Eged Hill not only for temperature increase and water shortage, but also for heavy, irregular precipitation that results in serious erosion problem.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Borbála BÁLO (1), Márta LADÁNYI (2), Nikoletta SZOBONYA (1), Péter BODOR (1),Tamás DEÁK, György Dénes BISZTRAY (1)

(1) Department of Viticulture, Szent István University, Budapest, Hungary
(2) Department of Biometrics and Agricultural Informatics, Szent István University,Budapest, Hungary

Contact the author

Keywords

terroir, slope, fruit zone, temperature, humidity, thermal belt

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The Australian geographical indication process

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses.

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines.

Investigating the carbon sequestration potential in vineyard soils–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard in a climate change scenario.

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.