Terroir 2016 banner
IVES 9 IVES Conference Series 9 Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Abstract

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process. While Saccharomyces cerevisiae seems to be limited in their expression of glycosidase enzymes required to cleave and liberate the aroma compounds from their precursors, different non-Saccharomyces yeast genera show more prominence. Due to the infrequent and scarce occurrence of Saccharomyces cerevisiae in the vineyard and grape samples, many scientific findings report that spontaneous alcoholic fermentation is dominantly conducted by yeast strains originating from the winery environment rather than from the vineyard. However, recent advancements of modern genetic tools have elucidated site-specific microbiota on grapes from different vineyards and vintages. Their role in fermented wine has not yet been clarified.

This study aims to shed light on the roles of vineyard and winery microbiomes in wine fermentations in relation to fermentation dynamics, aroma formation and sensory perception. Riesling grapes from five different Riesling vineyards in the Pfalz region, Germany was picked aseptically during the 2015 vintage. Pilot-scale spontaneous fermentations of each of the individual vineyard with triplicates were conducted with aseptically managed winemaking. Fermentation progress was monitored by density measurements and FTIR-spectroscopy. Yeast population dynamics in the fermentations were monitored and identified with next-generation sequencing technology. Descriptive analysis of the wines was used to evaluate the changes in aroma and flavor sensory profiles.

Results show plausible promise in both the microbial difference occurring in the vineyard as well as clear impact of the winery-derived microbiome. Modulation of aroma and taste was observed and correlated with the occurrence of specific yeast species.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Kimmo Siren

Centre DLR RheinPfalz, Institute for Viticulture and Oenology

Contact the author

Keywords

Terroir, enology, Riesling, fermentation, indigenous yeast

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Un paysage viticole est une relation entre des formes, dimension objective, et la perception que nous en avons, dimension subjective, émotionnelle. La viticulture n’est pas seulement productrice d’un vin, elle contribue également à façonner le paysage. Pourtant, jusqu’à présent, la connaissance des terroirs était principalement basée sur la caractérisation de leur aptitude à produire des vins de qualité.

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Growers’ attitudes towards organic certification: the case of Central Otago, New Zealand

New Zealand viticulture has long been characterised by sustainable grape growing practices as promoted by Sustainable Winegrowing New Zealand (SWNZ) as well as by Organic Viticulture.