Terroir 2016 banner
IVES 9 IVES Conference Series 9 Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Abstract

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs. An entropy-based index used to characterize the heterogeneity of soil particle size distribution has been recently recognized to be controlled by the lithological properties at landscape scale. This index, known as the Balanced Entropy Index (BEI), which has been identified as a very good predictor of soil water content, is a promising tool in geosciences because it provides a continuous parameterization of soil texture that enables establishing quantitative relationships between soil texture and all the hydropedological attributes related to it.

In this study, carried out in the Portuguese winegrowing region called Região Demarcada do Douro (RD Douro), we explored the BEI in the lithostratigraphic units, and its potential relationship with the vineyard distribution and characteristics at plot scale. The data set for this work was the soil map of RD Douro scale 1/25 000, the vineyard distribution, and the information of the soil map database, which includes analytical and morphological data of 1 217 soil profiles.

Results evidenced that, in areas with similar lithological properties, vineyard plant density is linearly related with the soil texture heterogeneity, being this relationship stronger in metamorphic lithologies than in granitic lithologies. In light of this and other remarkable results we concluded that the BEI is a useful new tool that might have multiple applications in terroir studies.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Joaquín CÁMARA, Alberto LÁZARO, Vicente GÓMEZ-MIGUEL

Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Avda. Puerta de Hierro, 2, Spain

Contact the author

Keywords

soil texture heterogeneity, Balanced Entropy Index, plant density, fractals, RD Douro

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Applications pratiques du zonage vitivinicole

Le zonage vitivinicole présente toute une série d’applications pratiques. Son importance est en train d’augmenter, soit en fonction des moyens techniques chaque fois plus performants, qui rendent possible le développement des zonages de plus en plus intégrées, consistants et utiles, soit en fonction d’un marché de plus en plus mondialisé. L’article situe la contribution du zonage au niveau de la production vitivinicole et du développement du territoire.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.