Terroir 2016 banner
IVES 9 IVES Conference Series 9 Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Abstract

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Twelve Niagara Peninsula sites (six each of Riesling and Cabernet franc) were chosen in 2015. Data were collected from a grid of vines (≈ 80 per vineyard) geolocated by GPS. Soil moisture and leaf water potential (ψ) data (three times during the growing season; June to September) and yield components/berry composition were collected. Ground based GreenSeekerTM data were likewise acquired June to September, while multi-spectral UAV data were obtained at veraison and processed into geo-referenced high spatial resolution maps of biophysical indices (e.g., NDVI). Following harvest, yield/berry composition maps were also prepared. These data layers in conjunction with growing/dormant season sentinel vine data [e.g. soil moisture, leaf ψ, vine size, winter hardiness (LT50)], were used for map creation. Vine size, LT50, yield, berry weight, and berry composition data were correlated in several vineyards to NDVI and other data acquired with the UAV and GreenSeekerTM, while soil and vine water status, and yield components showed direct relationships with NDVI. Spatial relationships were also apparent from examination of the maps.

Principal components analysis confirmed these relationships. Map analysis to determine spatial relationships was accomplished by calculation of Moran’s I and k-means clustering. NDVI values were considerably higher in GreenSeeker maps vs. those from UAV flights. Water status zones, and those of several fruit composition variables, were correlated with UAV-derived NDVI. Preliminary conclusions suggest that UAVs have significant potential to identify zones of superior fruit composition.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew G. REYNOLDS (1), Ralph BROWN (2), Marilyne JOLLINEAU (3), Adam SHEMROCK (4), Elena KOTSAKI (1), Hyun-Suk LEE (1), Wei ZHENG (5)

(1) Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada
(2) School of Engineering, University of Guelph, Guelph, ON, Canada
(3) Dept. of Geography, Brock University, St. Catharines, Ontario, Canada
(4) Air-Tech Solutions, Kingston, Ontario, Canada
(5) Dept. of Agriculture and Food, University of La Rioja, Logroño, La Rioja, Spain

Contact the author

Keywords

Precision viticulture, drones, leaf water potential, soil moisture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

The aim was to study the impact of structural features in the polysaccharide moiety of mannoproteins on their interaction with polyphenols and the formation of colloidal aggregates.

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Management of water status in vineyards: meta-analysis of its effects on yield and grape composition

Mediterranean vineyards have been traditionally grown under rainfed conditions, but in recent decades the irrigated area has increased significantly, seeking to minimize the adverse effects of severe water stress on grape quality and yield. Given the large area occupied by vineyards, and the increasing scarcity of water resources, it is necessary to develop strategies for the optimization and efficient use of water to reduce the risk of its overexploitation. The present study aims at valorizing previous knowledge generated in different research projects by means of a meta-analysis of the effects of water status management on vineyard performance.