Terroir 2016 banner
IVES 9 IVES Conference Series 9 Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Abstract

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Twelve Niagara Peninsula sites (six each of Riesling and Cabernet franc) were chosen in 2015. Data were collected from a grid of vines (≈ 80 per vineyard) geolocated by GPS. Soil moisture and leaf water potential (ψ) data (three times during the growing season; June to September) and yield components/berry composition were collected. Ground based GreenSeekerTM data were likewise acquired June to September, while multi-spectral UAV data were obtained at veraison and processed into geo-referenced high spatial resolution maps of biophysical indices (e.g., NDVI). Following harvest, yield/berry composition maps were also prepared. These data layers in conjunction with growing/dormant season sentinel vine data [e.g. soil moisture, leaf ψ, vine size, winter hardiness (LT50)], were used for map creation. Vine size, LT50, yield, berry weight, and berry composition data were correlated in several vineyards to NDVI and other data acquired with the UAV and GreenSeekerTM, while soil and vine water status, and yield components showed direct relationships with NDVI. Spatial relationships were also apparent from examination of the maps.

Principal components analysis confirmed these relationships. Map analysis to determine spatial relationships was accomplished by calculation of Moran’s I and k-means clustering. NDVI values were considerably higher in GreenSeeker maps vs. those from UAV flights. Water status zones, and those of several fruit composition variables, were correlated with UAV-derived NDVI. Preliminary conclusions suggest that UAVs have significant potential to identify zones of superior fruit composition.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew G. REYNOLDS (1), Ralph BROWN (2), Marilyne JOLLINEAU (3), Adam SHEMROCK (4), Elena KOTSAKI (1), Hyun-Suk LEE (1), Wei ZHENG (5)

(1) Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada
(2) School of Engineering, University of Guelph, Guelph, ON, Canada
(3) Dept. of Geography, Brock University, St. Catharines, Ontario, Canada
(4) Air-Tech Solutions, Kingston, Ontario, Canada
(5) Dept. of Agriculture and Food, University of La Rioja, Logroño, La Rioja, Spain

Contact the author

Keywords

Precision viticulture, drones, leaf water potential, soil moisture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

What practices in the vineyard lead to the production of wines that consistently win medals?

High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

A few observations on double sigmoid fruit growth

Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.