Terroir 2016 banner
IVES 9 IVES Conference Series 9 Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Abstract

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Twelve Niagara Peninsula sites (six each of Riesling and Cabernet franc) were chosen in 2015. Data were collected from a grid of vines (≈ 80 per vineyard) geolocated by GPS. Soil moisture and leaf water potential (ψ) data (three times during the growing season; June to September) and yield components/berry composition were collected. Ground based GreenSeekerTM data were likewise acquired June to September, while multi-spectral UAV data were obtained at veraison and processed into geo-referenced high spatial resolution maps of biophysical indices (e.g., NDVI). Following harvest, yield/berry composition maps were also prepared. These data layers in conjunction with growing/dormant season sentinel vine data [e.g. soil moisture, leaf ψ, vine size, winter hardiness (LT50)], were used for map creation. Vine size, LT50, yield, berry weight, and berry composition data were correlated in several vineyards to NDVI and other data acquired with the UAV and GreenSeekerTM, while soil and vine water status, and yield components showed direct relationships with NDVI. Spatial relationships were also apparent from examination of the maps.

Principal components analysis confirmed these relationships. Map analysis to determine spatial relationships was accomplished by calculation of Moran’s I and k-means clustering. NDVI values were considerably higher in GreenSeeker maps vs. those from UAV flights. Water status zones, and those of several fruit composition variables, were correlated with UAV-derived NDVI. Preliminary conclusions suggest that UAVs have significant potential to identify zones of superior fruit composition.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew G. REYNOLDS (1), Ralph BROWN (2), Marilyne JOLLINEAU (3), Adam SHEMROCK (4), Elena KOTSAKI (1), Hyun-Suk LEE (1), Wei ZHENG (5)

(1) Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada
(2) School of Engineering, University of Guelph, Guelph, ON, Canada
(3) Dept. of Geography, Brock University, St. Catharines, Ontario, Canada
(4) Air-Tech Solutions, Kingston, Ontario, Canada
(5) Dept. of Agriculture and Food, University of La Rioja, Logroño, La Rioja, Spain

Contact the author

Keywords

Precision viticulture, drones, leaf water potential, soil moisture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.