Terroir 2016 banner
IVES 9 IVES Conference Series 9 Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Abstract

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Twelve Niagara Peninsula sites (six each of Riesling and Cabernet franc) were chosen in 2015. Data were collected from a grid of vines (≈ 80 per vineyard) geolocated by GPS. Soil moisture and leaf water potential (ψ) data (three times during the growing season; June to September) and yield components/berry composition were collected. Ground based GreenSeekerTM data were likewise acquired June to September, while multi-spectral UAV data were obtained at veraison and processed into geo-referenced high spatial resolution maps of biophysical indices (e.g., NDVI). Following harvest, yield/berry composition maps were also prepared. These data layers in conjunction with growing/dormant season sentinel vine data [e.g. soil moisture, leaf ψ, vine size, winter hardiness (LT50)], were used for map creation. Vine size, LT50, yield, berry weight, and berry composition data were correlated in several vineyards to NDVI and other data acquired with the UAV and GreenSeekerTM, while soil and vine water status, and yield components showed direct relationships with NDVI. Spatial relationships were also apparent from examination of the maps.

Principal components analysis confirmed these relationships. Map analysis to determine spatial relationships was accomplished by calculation of Moran’s I and k-means clustering. NDVI values were considerably higher in GreenSeeker maps vs. those from UAV flights. Water status zones, and those of several fruit composition variables, were correlated with UAV-derived NDVI. Preliminary conclusions suggest that UAVs have significant potential to identify zones of superior fruit composition.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew G. REYNOLDS (1), Ralph BROWN (2), Marilyne JOLLINEAU (3), Adam SHEMROCK (4), Elena KOTSAKI (1), Hyun-Suk LEE (1), Wei ZHENG (5)

(1) Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada
(2) School of Engineering, University of Guelph, Guelph, ON, Canada
(3) Dept. of Geography, Brock University, St. Catharines, Ontario, Canada
(4) Air-Tech Solutions, Kingston, Ontario, Canada
(5) Dept. of Agriculture and Food, University of La Rioja, Logroño, La Rioja, Spain

Contact the author

Keywords

Precision viticulture, drones, leaf water potential, soil moisture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Changing New Zealand climate equals a changing New Zealand terroir?

Changing New Zealand climate equals a changing New Zealand terroir