Terroir 2016 banner
IVES 9 IVES Conference Series 9 Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

Abstract

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Twelve Niagara Peninsula sites (six each of Riesling and Cabernet franc) were chosen in 2015. Data were collected from a grid of vines (≈ 80 per vineyard) geolocated by GPS. Soil moisture and leaf water potential (ψ) data (three times during the growing season; June to September) and yield components/berry composition were collected. Ground based GreenSeekerTM data were likewise acquired June to September, while multi-spectral UAV data were obtained at veraison and processed into geo-referenced high spatial resolution maps of biophysical indices (e.g., NDVI). Following harvest, yield/berry composition maps were also prepared. These data layers in conjunction with growing/dormant season sentinel vine data [e.g. soil moisture, leaf ψ, vine size, winter hardiness (LT50)], were used for map creation. Vine size, LT50, yield, berry weight, and berry composition data were correlated in several vineyards to NDVI and other data acquired with the UAV and GreenSeekerTM, while soil and vine water status, and yield components showed direct relationships with NDVI. Spatial relationships were also apparent from examination of the maps.

Principal components analysis confirmed these relationships. Map analysis to determine spatial relationships was accomplished by calculation of Moran’s I and k-means clustering. NDVI values were considerably higher in GreenSeeker maps vs. those from UAV flights. Water status zones, and those of several fruit composition variables, were correlated with UAV-derived NDVI. Preliminary conclusions suggest that UAVs have significant potential to identify zones of superior fruit composition.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew G. REYNOLDS (1), Ralph BROWN (2), Marilyne JOLLINEAU (3), Adam SHEMROCK (4), Elena KOTSAKI (1), Hyun-Suk LEE (1), Wei ZHENG (5)

(1) Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada
(2) School of Engineering, University of Guelph, Guelph, ON, Canada
(3) Dept. of Geography, Brock University, St. Catharines, Ontario, Canada
(4) Air-Tech Solutions, Kingston, Ontario, Canada
(5) Dept. of Agriculture and Food, University of La Rioja, Logroño, La Rioja, Spain

Contact the author

Keywords

Precision viticulture, drones, leaf water potential, soil moisture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

An analysis of wine geographical indications from the perspective of the theory of industrial organizations: what are the trade off?

From Porto and then through Bordeaux, Champagne and Bourgogne, wine geographical indications (gi) were the driving models for this form of protection of distinctive signs for collective use. Many studies present the benefits of recognizing a gi for a given region, the challenges of its implementation, as well as the possibilities of promoting territorial development.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

Teran grape quality influenced by different irrigation treatments

Teran is an important native variety grown in Istria known for its high level of polyphenols and intensive fruity character of wines. Teran’s yield and wine typicity have recently decreased due to climate changes (increased temperature and severe drought). Four drip irrigation treatments (25%, 50%, 75%, 100% of total evapotranspiration) and control were investigated for the influence on Teran yield and quality, where focus was given to the content and composition of main polyphenolic and volatile compounds in grapes. Irrigation positively influenced yield since the berry weight also increased with increased irrigation. This resulted in the highest yield for 100% ETc. The highest concentration of polyphenols had control, while the irrigation treatments did not differ significantly. However, there was a tendency to decrease concentration with increased irrigation probably due to the increased berry size, which led to a dilution effect. Regarding the volatile compounds, the most abundant group was alcohols, followed by acids.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.