Terroir 2016 banner
IVES 9 IVES Conference Series 9 Using a grape compositional model to predict harvest time and influence wine style

Using a grape compositional model to predict harvest time and influence wine style

Abstract

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation. Grape composition regulates the production and final concentrations of most wine aroma compounds, as exemplified by methoxypyrazine and rotundone concentrations in wine being confidently predicted from the corresponding grape concentration. However, the final concentrations of many compounds in wines (aromatic and non-aromatic) are substantially dependent on the winemaking process.
The aim of this study was to better understand grape flavour evolution in relation to wine composition and subsequent wine style using sequential harvests (n=3). To achieve this goal, Shiraz was chosen as a model variety across two different climatic regions (warm-hot and cool-temperate) in New South Wales, Australia. The objective was not to compare the two regions but to assess the consistency of grape flavour evolution over the ripening period.

Irrespective of the region, a clear separation of samples was noted according to the harvest stage. Shiraz wines from the first harvest (H1) were associated with red fruit descriptors and higher acidity. Wines from the third harvest (H3) were correlated with dark fruit characters and a higher perception of alcohol. Higher concentrations of some higher alcohol acetates, dimethyl sulfide and lower concentrations of Z-3-hexenol, ethyl isobutyrate and ethyl leucate were measured in H3 wines.
Irrespective of the environment, this study demonstrated that in Shiraz, a common evolution of grape flavours exists, influencing the final wine sensory properties. Furthermore, during the late ripening stage, no direct nexus was observed between sugar concentration and grape and wine flavour evolution.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Alain DELOIRE (1), Katja ŠUKLJE (1), Guillaume ANTALICK (1), John BLACKMAN (1,2), Leigh SCHMIDTKE (1,2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia

Contact the author

Keywords

fruit and wine composition, wine sensory profile, sequential harvest, regionality, climate, volatiles, multivariate data analyses

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.