Terroir 2016 banner
IVES 9 IVES Conference Series 9 Using a grape compositional model to predict harvest time and influence wine style

Using a grape compositional model to predict harvest time and influence wine style

Abstract

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation. Grape composition regulates the production and final concentrations of most wine aroma compounds, as exemplified by methoxypyrazine and rotundone concentrations in wine being confidently predicted from the corresponding grape concentration. However, the final concentrations of many compounds in wines (aromatic and non-aromatic) are substantially dependent on the winemaking process.
The aim of this study was to better understand grape flavour evolution in relation to wine composition and subsequent wine style using sequential harvests (n=3). To achieve this goal, Shiraz was chosen as a model variety across two different climatic regions (warm-hot and cool-temperate) in New South Wales, Australia. The objective was not to compare the two regions but to assess the consistency of grape flavour evolution over the ripening period.

Irrespective of the region, a clear separation of samples was noted according to the harvest stage. Shiraz wines from the first harvest (H1) were associated with red fruit descriptors and higher acidity. Wines from the third harvest (H3) were correlated with dark fruit characters and a higher perception of alcohol. Higher concentrations of some higher alcohol acetates, dimethyl sulfide and lower concentrations of Z-3-hexenol, ethyl isobutyrate and ethyl leucate were measured in H3 wines.
Irrespective of the environment, this study demonstrated that in Shiraz, a common evolution of grape flavours exists, influencing the final wine sensory properties. Furthermore, during the late ripening stage, no direct nexus was observed between sugar concentration and grape and wine flavour evolution.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Alain DELOIRE (1), Katja ŠUKLJE (1), Guillaume ANTALICK (1), John BLACKMAN (1,2), Leigh SCHMIDTKE (1,2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia

Contact the author

Keywords

fruit and wine composition, wine sensory profile, sequential harvest, regionality, climate, volatiles, multivariate data analyses

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.