Terroir 2016 banner
IVES 9 IVES Conference Series 9 Terroir factors causing sensory and chemical variation in Riesling wines

Terroir factors causing sensory and chemical variation in Riesling wines

Abstract

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments. Although geological diversity has been described for many vineyard sites, there is only scarce scientific knowledge about how the specific soil or climatic conditions translate into specific sensory differences.

To investigate the sensory impact of terroir, a range of 25 highly diverse vineyard sites were selected in Germany. Riesling grapes were harvested from those sites during five consecutive vintages, which were either processed following a standardised winemaking protocol or according to customary winemaking in the respective wine estate. Eight to ten months after harvest, a descriptive analysis by 20 trained judges characterised the wines by one colour, 14 odor and five taste attributes.

According to sensory analysis, wine originating from different vineyard sites yielded a considerable variation, although they were in close proximity. For example, throughout five vintages wines made from Riesling grapes grown on a loamy loess soil with basalt stones were much more intense in its citrus, peach, mango and honey melon attributes than the wines produced from light colored sandstone, which was described as more sour with vegetative and mineral notes. Applying discriminant analysis, it was possible to group the five bedrock types according to their sensory properties, and identify their typical aroma attributes.

Combining sensory and site specific data, PLS analysis was able to explain 48% of the sensory variation by a combined soil/climate data set with first two dimensions. The highest coefficients of determination were obtained for the explanation of sourness-related attributes (R2 0.82 – 0.94), which correlated with precipitation during the ripening period and the gravel content of the soil. The odour of honeydew melon was related to the sum of growing degree days, calcium and clay content of the soil plant available water.
Extracted flavor compounds of the wines were also analysed by GC-MS and used to group different terroirs. Furthermore, concentration of flavor compounds could be linked as well with soil and climate data using PLS-regression as well as to link them with sensory perception. 

Overall, this research could address specifically the impact of individual versus standardized winemaking, since wines were obtained from both sources, but from identical grape material. Throughout five vintages and 24 vineyard sites, customized winemaking was superior to distinguish the different terroirs to a greater extent than standardized winemaking.
Based on the analysis of up to 105 wine samples the impact of terroir could be demonstrated on a very robust data basis. Knowledge gained on how site-specific soil and climate parameters contribute to sensory differences in the wines will be an important contribution to communicating the concept of terroir to consumers.”

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ulrich Fischer (1), Andrea Bauer (2), Stefan Koschinski (3), Sascha Wolz (1), Anette Schormann (1) and Hans-Georg Schmarr (1)

(1) Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt/Wstr. Germany.
(2) Department of Life Sciences, University of Applied Science, Hamburg, Germany
(3) Almsco/Markes International, Germany

Contact the author

Keywords

Terroir, wine, viticulture, Riesling, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.