Terroir 2016 banner
IVES 9 IVES Conference Series 9 Terroir factors causing sensory and chemical variation in Riesling wines

Terroir factors causing sensory and chemical variation in Riesling wines

Abstract

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments. Although geological diversity has been described for many vineyard sites, there is only scarce scientific knowledge about how the specific soil or climatic conditions translate into specific sensory differences.

To investigate the sensory impact of terroir, a range of 25 highly diverse vineyard sites were selected in Germany. Riesling grapes were harvested from those sites during five consecutive vintages, which were either processed following a standardised winemaking protocol or according to customary winemaking in the respective wine estate. Eight to ten months after harvest, a descriptive analysis by 20 trained judges characterised the wines by one colour, 14 odor and five taste attributes.

According to sensory analysis, wine originating from different vineyard sites yielded a considerable variation, although they were in close proximity. For example, throughout five vintages wines made from Riesling grapes grown on a loamy loess soil with basalt stones were much more intense in its citrus, peach, mango and honey melon attributes than the wines produced from light colored sandstone, which was described as more sour with vegetative and mineral notes. Applying discriminant analysis, it was possible to group the five bedrock types according to their sensory properties, and identify their typical aroma attributes.

Combining sensory and site specific data, PLS analysis was able to explain 48% of the sensory variation by a combined soil/climate data set with first two dimensions. The highest coefficients of determination were obtained for the explanation of sourness-related attributes (R2 0.82 – 0.94), which correlated with precipitation during the ripening period and the gravel content of the soil. The odour of honeydew melon was related to the sum of growing degree days, calcium and clay content of the soil plant available water.
Extracted flavor compounds of the wines were also analysed by GC-MS and used to group different terroirs. Furthermore, concentration of flavor compounds could be linked as well with soil and climate data using PLS-regression as well as to link them with sensory perception. 

Overall, this research could address specifically the impact of individual versus standardized winemaking, since wines were obtained from both sources, but from identical grape material. Throughout five vintages and 24 vineyard sites, customized winemaking was superior to distinguish the different terroirs to a greater extent than standardized winemaking.
Based on the analysis of up to 105 wine samples the impact of terroir could be demonstrated on a very robust data basis. Knowledge gained on how site-specific soil and climate parameters contribute to sensory differences in the wines will be an important contribution to communicating the concept of terroir to consumers.”

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ulrich Fischer (1), Andrea Bauer (2), Stefan Koschinski (3), Sascha Wolz (1), Anette Schormann (1) and Hans-Georg Schmarr (1)

(1) Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt/Wstr. Germany.
(2) Department of Life Sciences, University of Applied Science, Hamburg, Germany
(3) Almsco/Markes International, Germany

Contact the author

Keywords

Terroir, wine, viticulture, Riesling, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.