Terroir 2016 banner
IVES 9 IVES Conference Series 9 Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Abstract

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality. 35 wineries, consisting of 75 vineyard blocks, mainly located within the Napa Valley were monitored throughout the 2015 growing season.

Across the studied sites, there was a large difference in climatic conditions, ranging up to 700 growing degree days. This large difference in heat accumulation profiles, as well as heat events, in the local area allowed us to better understand the change in phenolic concentration, composition and extraction profiles over a range of pedoclimatic areas. Vine water status was measured throughout the season using sap flow sensors within the berry sampling area. For each site, berry samples were collected at five times between veraison and commercial harvest. Skin and seed exhaustive extractions (2:1 acetone:water) were done after the pulp was removed from the berry and the skin separated from the seed. Partial extractions of berries was done on crushed whole berries in a 16% v/v ethanol solution containing 100 mg/kg of SO2 in order to develop an understanding of phenolic extractability over the space-time-climate continuum. Extracted phenolics were monitored using four separate HPLC methods in order to provide information on low molecular mass phenolics as well as tannin concentration, composition and activity.

A discussion of climate change impact on premium wine production regions is given in the context of the variation in phenolic chemistry observed in this study.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

James R. Campbell (1,2), James A. Kennedy (1,3), Thibaut Scholasch (2)

(1) Department of Viticulture and Enology, California State University, Fresno, USA
(2) Fruition Sciences SAS, Montpellier, France
(3) Current affiliation: Constellation Brands, Inc., Madera, CA, USA

Contact the author

Keywords

Cabernet-Sauvignon, terroir, vine water status, viticulture, climate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Legal and economic evolution of the Japanese wine industry in the 21st century

Historically bounded by strict regulations with a focus on taxation since the 19th century, the japanese wine industry stands at a crossroads in the 21st century, necessitated by alignment with international standards and opening towards global markets.