Terroir 2016 banner
IVES 9 IVES Conference Series 9 Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Abstract

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality. 35 wineries, consisting of 75 vineyard blocks, mainly located within the Napa Valley were monitored throughout the 2015 growing season.

Across the studied sites, there was a large difference in climatic conditions, ranging up to 700 growing degree days. This large difference in heat accumulation profiles, as well as heat events, in the local area allowed us to better understand the change in phenolic concentration, composition and extraction profiles over a range of pedoclimatic areas. Vine water status was measured throughout the season using sap flow sensors within the berry sampling area. For each site, berry samples were collected at five times between veraison and commercial harvest. Skin and seed exhaustive extractions (2:1 acetone:water) were done after the pulp was removed from the berry and the skin separated from the seed. Partial extractions of berries was done on crushed whole berries in a 16% v/v ethanol solution containing 100 mg/kg of SO2 in order to develop an understanding of phenolic extractability over the space-time-climate continuum. Extracted phenolics were monitored using four separate HPLC methods in order to provide information on low molecular mass phenolics as well as tannin concentration, composition and activity.

A discussion of climate change impact on premium wine production regions is given in the context of the variation in phenolic chemistry observed in this study.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

James R. Campbell (1,2), James A. Kennedy (1,3), Thibaut Scholasch (2)

(1) Department of Viticulture and Enology, California State University, Fresno, USA
(2) Fruition Sciences SAS, Montpellier, France
(3) Current affiliation: Constellation Brands, Inc., Madera, CA, USA

Contact the author

Keywords

Cabernet-Sauvignon, terroir, vine water status, viticulture, climate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Influence of grape withering on corvina and corvinone aroma composition

AIM:Valpolicella is a wine region located in Italy north-east, famous for the production of dry and sweet red wines from withered grapes, including Amarone and Recioto. The aim of this study is to understand the influence of the withering process on Corvina and Corvinone wines aroma profiles. METHODS:Wines were produced with a standard red wine winemaking protocol with Corvina and Corvinone grapes from different Valpolicella vineyards and vintages. In consideration of the local traditional practice of post-harvest withering of the grapes, wines from each vineyard were obtained from either fresh and withered grapes. Wines were analysed by Solid Phase Extraction and Solid Phase Micro Extraction gas chromatography coupled to mass spectrometry.

Predicting consumers’ organic wine consumption behaviour

Organic wine production and consumption is one of the sustainable practices contributing to a number of sustainable development goals (SDGs).