Terroir 2016 banner
IVES 9 IVES Conference Series 9 Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Abstract

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality. 35 wineries, consisting of 75 vineyard blocks, mainly located within the Napa Valley were monitored throughout the 2015 growing season.

Across the studied sites, there was a large difference in climatic conditions, ranging up to 700 growing degree days. This large difference in heat accumulation profiles, as well as heat events, in the local area allowed us to better understand the change in phenolic concentration, composition and extraction profiles over a range of pedoclimatic areas. Vine water status was measured throughout the season using sap flow sensors within the berry sampling area. For each site, berry samples were collected at five times between veraison and commercial harvest. Skin and seed exhaustive extractions (2:1 acetone:water) were done after the pulp was removed from the berry and the skin separated from the seed. Partial extractions of berries was done on crushed whole berries in a 16% v/v ethanol solution containing 100 mg/kg of SO2 in order to develop an understanding of phenolic extractability over the space-time-climate continuum. Extracted phenolics were monitored using four separate HPLC methods in order to provide information on low molecular mass phenolics as well as tannin concentration, composition and activity.

A discussion of climate change impact on premium wine production regions is given in the context of the variation in phenolic chemistry observed in this study.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

James R. Campbell (1,2), James A. Kennedy (1,3), Thibaut Scholasch (2)

(1) Department of Viticulture and Enology, California State University, Fresno, USA
(2) Fruition Sciences SAS, Montpellier, France
(3) Current affiliation: Constellation Brands, Inc., Madera, CA, USA

Contact the author

Keywords

Cabernet-Sauvignon, terroir, vine water status, viticulture, climate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Understanding provenance and terroir in Australian Pinot noir

Aims: This study aimed to (1) characterise colour and phenolic profiles of commercial Australian Pinot noir wines, (2) understand regional drivers of sensory and volatile profiles of commercial Australian Pinot noir wines, and (3) generate a deeper understanding of where Australian Pinot noir wines profiles sit in an international context.

Monitoring of microbial biomass to characterise vineyard soils

Le sol est un facteur important permettant la croissance de la vigne. Les propriétés physiques et chimiques, mais aussi microbiologiques ont une influence sur beaucoup des fonctions du sol comme la structure, le drainage, la fertilité, déterminant la vigueur des plantes et le potentiel œnologique des raisins.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Simulating berry sunburn in virtual vineyards

Context and purpose of the study. Berry sunburn in vineyards is a recurring disorder that can cause severe yield loss. As sunburn observations are often associated with heat waves, a link to climate change is likely.

Les paysages viticoles des régions Vale Dos Vinhedos et Monte Belo (Brésil), un lien avec l’Etrurie

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...