Terroir 2016 banner
IVES 9 IVES Conference Series 9 Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

Abstract

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality. 35 wineries, consisting of 75 vineyard blocks, mainly located within the Napa Valley were monitored throughout the 2015 growing season.

Across the studied sites, there was a large difference in climatic conditions, ranging up to 700 growing degree days. This large difference in heat accumulation profiles, as well as heat events, in the local area allowed us to better understand the change in phenolic concentration, composition and extraction profiles over a range of pedoclimatic areas. Vine water status was measured throughout the season using sap flow sensors within the berry sampling area. For each site, berry samples were collected at five times between veraison and commercial harvest. Skin and seed exhaustive extractions (2:1 acetone:water) were done after the pulp was removed from the berry and the skin separated from the seed. Partial extractions of berries was done on crushed whole berries in a 16% v/v ethanol solution containing 100 mg/kg of SO2 in order to develop an understanding of phenolic extractability over the space-time-climate continuum. Extracted phenolics were monitored using four separate HPLC methods in order to provide information on low molecular mass phenolics as well as tannin concentration, composition and activity.

A discussion of climate change impact on premium wine production regions is given in the context of the variation in phenolic chemistry observed in this study.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

James R. Campbell (1,2), James A. Kennedy (1,3), Thibaut Scholasch (2)

(1) Department of Viticulture and Enology, California State University, Fresno, USA
(2) Fruition Sciences SAS, Montpellier, France
(3) Current affiliation: Constellation Brands, Inc., Madera, CA, USA

Contact the author

Keywords

Cabernet-Sauvignon, terroir, vine water status, viticulture, climate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability.