Terroir 2016 banner
IVES 9 IVES Conference Series 9 The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Abstract

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic. This study examines differences in the soil properties and elemental chemistry of the soil parent materials at various vineyards to document their effect on wine chemistry. The physical characteristics of soils from all the three parent materials indicate: they are old (>50,000 years) based on their high clay content, low cation exchange capacity, red colors, and high Fe and Al content. In my study region, volcanic and marine sediment soils are more developed with slightly lower acidity than the loess/volcanic soils. A new finding for this region is the presence of pisolites (Fe/Mg concretions) in the volcanic and the loess/volcanic soils, but absent in the marine sediment soils. Volcanic soils have the highest P, S, Fe, Co, Mn, and V concentrations and the lowest As and Sr values.

Marine sediment soils have higher Cl and Sr and lower P, Co, Mn, Ba, and V concentrations than volcanic soils. Loess soils have the highest values of K and Mg and are similar to volcanic soils with higher P and V values and similar to marine sediment soils with higher Sr values. The main elements found to be significant in determining one parent material from another are V and Mn (volcanic soils), Mg and K (loess soils), and Sr (marine sediment or loess soils). Sr is slightly higher in grape juice and wine from vines grown on marine sediment parent material compared to volcanic and loess parent material, whereas Mn is higher in the juice and wine from grapes grown in volcanic parent material. P, S, Fe, Co, V, Cl, Ba, Mg, and K did not maintain their relative concentration levels from soil to grape juice to wine. The principal component analysis shows that soil and wine chemistry differs between parent material, but is inconclusive for grape juice chemistry.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Kathryn Nora Barnard (1), Scott F. Burns (1)

(1) Department of Geology, Portland State University, 1825 SW Broadway Avenue, Portland, Oregon., USA

Contact the author

Keywords

Pinot Noir, ICP-MS/AES, particle size, cation exchange capacity, X-ray fluorescence, clay mineralogy, grape juice chemistry, wine chemistry, soil chemistry

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.