Terroir 2014 banner
IVES 9 IVES Conference Series 9 Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Abstract

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce. The aim of this work was to evaluate the effect of terroir on carbon and nitrogen stable isotope natural abundance within a single grape growing farm. Three vineyards representative of three terroirs within a grape growing farm were selected. The mesoclimatic differences between them can be considered negligible, and crop management was in general terms the same. Therefore, the differences in plant behaviour should be majorly a consequence of soil characteristics (deep gravely vs. shallower loamy soil, cover crop vs. bare soil). During five consecutive seasons, plant vegetative growth and stem water potential (Ψs) were monitored throughout the growing season and, at harvest, yield and grape composition were determined including carbon (δ13C) and nitrogen (δ15N) isotopic ratios. Consistent differences for both δ13C and δ15N were found when the three terroirs were compared. On the one hand, δ13C reflected well the differences in water availability arising from either soil characteristics (deep gravelly vs. shallower loamy soil) and from the presence of a cover crop. On the other hand, δ15N was clearly higher in the gravelly soil area, possibly indicating nitrate leakage, since soil organic matter is known to have higher δ15N than inorganic fertilizers. The competition the cover crop exerted for N was reflected in berry nitrogen content but, on the contrary, did not affect δ15N.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Luis G. SANTESTEBAN, Carlos MIRANDA, Izaskun BARBARIN, José B. ROYO

Dpto. Prod. Agraria, Univ. P. Navarra, 31006 Pamplona, NA, Spain. 

Contact the author

Keywords

natural isotope abundance, water use efficiency, water status, nutrition, nitrogen sources, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Under-vine cover crops as a management tool for irrigated Mediterranean vineyards: agronomic implications and changes in soil physical and biological properties 

Cover crops are increasingly considered in Mediterranean climate vineyards due to a combination of agronomic and regulatory considerations. However, the soil under the vines themselves is typically kept free of vegetation by mechanical plowing or herbicide spraying. Taking into account that these practices may convey a number of non-favourable economic and environmental implications, and the fact that drip irrigation can ease the use of cover crops under the vines, the aim of this work was to evaluate the agronomic implications and the changes in soil physical and biological properties caused by an under-vine cover crop in a Mediterranean area.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

How to transform the odor of a white wine into a red wine? Color it red!

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.