Terroir 2014 banner
IVES 9 IVES Conference Series 9 Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Abstract

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce. The aim of this work was to evaluate the effect of terroir on carbon and nitrogen stable isotope natural abundance within a single grape growing farm. Three vineyards representative of three terroirs within a grape growing farm were selected. The mesoclimatic differences between them can be considered negligible, and crop management was in general terms the same. Therefore, the differences in plant behaviour should be majorly a consequence of soil characteristics (deep gravely vs. shallower loamy soil, cover crop vs. bare soil). During five consecutive seasons, plant vegetative growth and stem water potential (Ψs) were monitored throughout the growing season and, at harvest, yield and grape composition were determined including carbon (δ13C) and nitrogen (δ15N) isotopic ratios. Consistent differences for both δ13C and δ15N were found when the three terroirs were compared. On the one hand, δ13C reflected well the differences in water availability arising from either soil characteristics (deep gravelly vs. shallower loamy soil) and from the presence of a cover crop. On the other hand, δ15N was clearly higher in the gravelly soil area, possibly indicating nitrate leakage, since soil organic matter is known to have higher δ15N than inorganic fertilizers. The competition the cover crop exerted for N was reflected in berry nitrogen content but, on the contrary, did not affect δ15N.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Luis G. SANTESTEBAN, Carlos MIRANDA, Izaskun BARBARIN, José B. ROYO

Dpto. Prod. Agraria, Univ. P. Navarra, 31006 Pamplona, NA, Spain. 

Contact the author

Keywords

natural isotope abundance, water use efficiency, water status, nutrition, nitrogen sources, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Genomic comparison on O. oeni: can l. hilgardii be a novel starter culture in malolactic fermentation?

Malolactic fermentation (MLF) the microbial bioconversion of L-malic acid into L-lactic acid, is a pivotal metabolic process that holds fundamental significance for the quality and organoleptic characteristics of some wines. Oenococcus oeni is considered to be the main player in this conversion, and it is globally used as a starter culture for mlf thanks to his capacity to tolerate the harsh wine environment.

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.