Terroir 2014 banner
IVES 9 IVES Conference Series 9 Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Abstract

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce. The aim of this work was to evaluate the effect of terroir on carbon and nitrogen stable isotope natural abundance within a single grape growing farm. Three vineyards representative of three terroirs within a grape growing farm were selected. The mesoclimatic differences between them can be considered negligible, and crop management was in general terms the same. Therefore, the differences in plant behaviour should be majorly a consequence of soil characteristics (deep gravely vs. shallower loamy soil, cover crop vs. bare soil). During five consecutive seasons, plant vegetative growth and stem water potential (Ψs) were monitored throughout the growing season and, at harvest, yield and grape composition were determined including carbon (δ13C) and nitrogen (δ15N) isotopic ratios. Consistent differences for both δ13C and δ15N were found when the three terroirs were compared. On the one hand, δ13C reflected well the differences in water availability arising from either soil characteristics (deep gravelly vs. shallower loamy soil) and from the presence of a cover crop. On the other hand, δ15N was clearly higher in the gravelly soil area, possibly indicating nitrate leakage, since soil organic matter is known to have higher δ15N than inorganic fertilizers. The competition the cover crop exerted for N was reflected in berry nitrogen content but, on the contrary, did not affect δ15N.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Luis G. SANTESTEBAN, Carlos MIRANDA, Izaskun BARBARIN, José B. ROYO

Dpto. Prod. Agraria, Univ. P. Navarra, 31006 Pamplona, NA, Spain. 

Contact the author

Keywords

natural isotope abundance, water use efficiency, water status, nutrition, nitrogen sources, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study – Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.