Terroir 2014 banner
IVES 9 IVES Conference Series 9 Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Abstract

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce. The aim of this work was to evaluate the effect of terroir on carbon and nitrogen stable isotope natural abundance within a single grape growing farm. Three vineyards representative of three terroirs within a grape growing farm were selected. The mesoclimatic differences between them can be considered negligible, and crop management was in general terms the same. Therefore, the differences in plant behaviour should be majorly a consequence of soil characteristics (deep gravely vs. shallower loamy soil, cover crop vs. bare soil). During five consecutive seasons, plant vegetative growth and stem water potential (Ψs) were monitored throughout the growing season and, at harvest, yield and grape composition were determined including carbon (δ13C) and nitrogen (δ15N) isotopic ratios. Consistent differences for both δ13C and δ15N were found when the three terroirs were compared. On the one hand, δ13C reflected well the differences in water availability arising from either soil characteristics (deep gravelly vs. shallower loamy soil) and from the presence of a cover crop. On the other hand, δ15N was clearly higher in the gravelly soil area, possibly indicating nitrate leakage, since soil organic matter is known to have higher δ15N than inorganic fertilizers. The competition the cover crop exerted for N was reflected in berry nitrogen content but, on the contrary, did not affect δ15N.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Luis G. SANTESTEBAN, Carlos MIRANDA, Izaskun BARBARIN, José B. ROYO

Dpto. Prod. Agraria, Univ. P. Navarra, 31006 Pamplona, NA, Spain. 

Contact the author

Keywords

natural isotope abundance, water use efficiency, water status, nutrition, nitrogen sources, Vitis vinifera L.

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The role of molecular ecophysiology in terroir expression

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste.

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

Matériel végétal et valorisation des terroirs viticoles

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

Berry shrivel causes – summarizing current hypotheses

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored.