Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 Terroir influence on growth, grapes and grenache wines in the AOC priorat, northeast Spain

Terroir influence on growth, grapes and grenache wines in the AOC priorat, northeast Spain

Abstract

The Mediterranean climate of The Priorat AOC, situated behind the coastal mountain range of Tarragona, tends towards continentality with very little precipitation during the vegetation cycle. The soil is poor, dry and rocky, largely composed of slate schist, known as “llicorella”. Vines primarily grow on steep slopes and terraces.

To evaluate how the Priorat unique terroir influences the quality of its wines, two plots of Grenache were chosen, both grafted onto R110. In the study those two sites are referred to as: LO (in the township of Lloar) and EM (in the township of Molar), distinct topographic locations within the AOC. Grenache vines in LO are 14 years old growing in east-south facing terraces. Grenache vines in EM are 16 years old, and south-facing. Both vineyards feature VSP trellising with 2 wires (70cm height). The vines are pruned as bilateral cordon. During 2010 and 2011, leaf area (LA) at the phenological stages of pea size (PS), veraison (V), final ripening (RP) and post-harvest (PH) was measured. Berry phenolic maturity was monitored and the chemical analyses of the wine were carefully evaluated.

The 2010 vintage was characterized by a heterogenic distribution of rainfall and a lower vapor deficit pressure than 2011. Total leaf area (TLA) within parcels did not differ significantly in the temperate year. In the drier vintage, however, vines from LO developed more leaf area than those growing in the south-facing terraces at EM. Nevertheless, the total leaf area before harvest was similar. The heterogeneity in the soil profile at the LO location could likely induce a variation in the drainage capacity, affecting the vine growth (TLA). Small berries from EM produced the highest levels of anthocyanins. EM always has the highest content in ANT T, ANT E, IPT and DMACA in both years. Concerning the wines, the highest concentration of anthocyanin were found in the EM treatment, with greater differences that LO in 2010. Grenache vines growing under warm climate conditions (Priorat AOC), in heterogeneous-stony soils, showed notably variability in the wine composition in front of climate change.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Montserrat NADAL and Antoni SANCHEZ-ORTIZ

Dept Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, URV. Campus Sescelades, 43007 Tarragona, Spain.

Contact the author

Keywords

Priorat, Grenache, vapor pressure deficit, stony soil, schist, phenolics

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.