Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 Terroir influence on growth, grapes and grenache wines in the AOC priorat, northeast Spain

Terroir influence on growth, grapes and grenache wines in the AOC priorat, northeast Spain

Abstract

The Mediterranean climate of The Priorat AOC, situated behind the coastal mountain range of Tarragona, tends towards continentality with very little precipitation during the vegetation cycle. The soil is poor, dry and rocky, largely composed of slate schist, known as “llicorella”. Vines primarily grow on steep slopes and terraces.

To evaluate how the Priorat unique terroir influences the quality of its wines, two plots of Grenache were chosen, both grafted onto R110. In the study those two sites are referred to as: LO (in the township of Lloar) and EM (in the township of Molar), distinct topographic locations within the AOC. Grenache vines in LO are 14 years old growing in east-south facing terraces. Grenache vines in EM are 16 years old, and south-facing. Both vineyards feature VSP trellising with 2 wires (70cm height). The vines are pruned as bilateral cordon. During 2010 and 2011, leaf area (LA) at the phenological stages of pea size (PS), veraison (V), final ripening (RP) and post-harvest (PH) was measured. Berry phenolic maturity was monitored and the chemical analyses of the wine were carefully evaluated.

The 2010 vintage was characterized by a heterogenic distribution of rainfall and a lower vapor deficit pressure than 2011. Total leaf area (TLA) within parcels did not differ significantly in the temperate year. In the drier vintage, however, vines from LO developed more leaf area than those growing in the south-facing terraces at EM. Nevertheless, the total leaf area before harvest was similar. The heterogeneity in the soil profile at the LO location could likely induce a variation in the drainage capacity, affecting the vine growth (TLA). Small berries from EM produced the highest levels of anthocyanins. EM always has the highest content in ANT T, ANT E, IPT and DMACA in both years. Concerning the wines, the highest concentration of anthocyanin were found in the EM treatment, with greater differences that LO in 2010. Grenache vines growing under warm climate conditions (Priorat AOC), in heterogeneous-stony soils, showed notably variability in the wine composition in front of climate change.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Montserrat NADAL and Antoni SANCHEZ-ORTIZ

Dept Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, URV. Campus Sescelades, 43007 Tarragona, Spain.

Contact the author

Keywords

Priorat, Grenache, vapor pressure deficit, stony soil, schist, phenolics

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.

Polyphenol content examination of Tokaji Aszú wines

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos.

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.