Terroir 2014 banner
IVES 9 IVES Conference Series 9 Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Abstract

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture. 

Seven demonstration sites, in France, Spain and Portugal, followed common protocols in order to quantify biodiversity in vineyard plots and evaluate its possible link with the surrounding landscape. In each area, arthropods were monitored on 25 selected plots, from 2011 to 2013. Arthropods were sampled by non-selective trapping stations set into vines and semi-natural habitats (2011) and exclusively inside vine plots (2012-2013). They were sorted out using the Rapid Biodiversity Assessment method. Then, abundance and richness indices were calculated. The landscape surrounding each trapping station (400m radius) was characterized through a GIS database. Then, indices such as proportion of semi-natural habitats have been calculated. 

Semi-natural habitats show higher arthropods richness than vineyards, with a significant difference in richness values of 20 to 50%, depending on demonstration sites. On all French demonstration sites, a significant positive correlation was shown between the proportion of semi-natural habitats in a 400 m buffer area and the arthropods richness inside the vine plot. These results support the action program of the BioDiVine project, which consists in encouraging landscape management actions such as planting hedgerows or restoring semi-natural elements connectivity. This can be an efficient way to support biodiversity and promote environmental-friendly wine production. Yet, these actions have to be collectively managed to reach their maximum efficiency, and require a huge coordination effort.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Josépha GUENSER (1), Séverine MARY (1), Benjamin PORTE (2), Joël ROCHARD (2), Maarten van HELDEN (3)

(1) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 
(2) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France. 
(3) Bordeaux Sciences Agro, ISVV, 1 Cours du Général de Gaulle, 33170 Gradignan, France.

Contact the author

Keywords

Biodiversity, GIS, landscape management, vineyard

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.