Terroir 2014 banner
IVES 9 IVES Conference Series 9 Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Abstract

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture. 

Seven demonstration sites, in France, Spain and Portugal, followed common protocols in order to quantify biodiversity in vineyard plots and evaluate its possible link with the surrounding landscape. In each area, arthropods were monitored on 25 selected plots, from 2011 to 2013. Arthropods were sampled by non-selective trapping stations set into vines and semi-natural habitats (2011) and exclusively inside vine plots (2012-2013). They were sorted out using the Rapid Biodiversity Assessment method. Then, abundance and richness indices were calculated. The landscape surrounding each trapping station (400m radius) was characterized through a GIS database. Then, indices such as proportion of semi-natural habitats have been calculated. 

Semi-natural habitats show higher arthropods richness than vineyards, with a significant difference in richness values of 20 to 50%, depending on demonstration sites. On all French demonstration sites, a significant positive correlation was shown between the proportion of semi-natural habitats in a 400 m buffer area and the arthropods richness inside the vine plot. These results support the action program of the BioDiVine project, which consists in encouraging landscape management actions such as planting hedgerows or restoring semi-natural elements connectivity. This can be an efficient way to support biodiversity and promote environmental-friendly wine production. Yet, these actions have to be collectively managed to reach their maximum efficiency, and require a huge coordination effort.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Josépha GUENSER (1), Séverine MARY (1), Benjamin PORTE (2), Joël ROCHARD (2), Maarten van HELDEN (3)

(1) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 
(2) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France. 
(3) Bordeaux Sciences Agro, ISVV, 1 Cours du Général de Gaulle, 33170 Gradignan, France.

Contact the author

Keywords

Biodiversity, GIS, landscape management, vineyard

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite.

Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Dividing agrarian exploitations into microfields is a problem that influences the modern viticulture in a very important way. The aim of this work is the study of the influence of Geology and Geomorphology in agricultural structures

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.