Terroir 2014 banner
IVES 9 IVES Conference Series 9 Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Abstract

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture. 

Seven demonstration sites, in France, Spain and Portugal, followed common protocols in order to quantify biodiversity in vineyard plots and evaluate its possible link with the surrounding landscape. In each area, arthropods were monitored on 25 selected plots, from 2011 to 2013. Arthropods were sampled by non-selective trapping stations set into vines and semi-natural habitats (2011) and exclusively inside vine plots (2012-2013). They were sorted out using the Rapid Biodiversity Assessment method. Then, abundance and richness indices were calculated. The landscape surrounding each trapping station (400m radius) was characterized through a GIS database. Then, indices such as proportion of semi-natural habitats have been calculated. 

Semi-natural habitats show higher arthropods richness than vineyards, with a significant difference in richness values of 20 to 50%, depending on demonstration sites. On all French demonstration sites, a significant positive correlation was shown between the proportion of semi-natural habitats in a 400 m buffer area and the arthropods richness inside the vine plot. These results support the action program of the BioDiVine project, which consists in encouraging landscape management actions such as planting hedgerows or restoring semi-natural elements connectivity. This can be an efficient way to support biodiversity and promote environmental-friendly wine production. Yet, these actions have to be collectively managed to reach their maximum efficiency, and require a huge coordination effort.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Josépha GUENSER (1), Séverine MARY (1), Benjamin PORTE (2), Joël ROCHARD (2), Maarten van HELDEN (3)

(1) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 
(2) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France. 
(3) Bordeaux Sciences Agro, ISVV, 1 Cours du Général de Gaulle, 33170 Gradignan, France.

Contact the author

Keywords

Biodiversity, GIS, landscape management, vineyard

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

“Un grande theatro di amenissimi colli”: “tutti coltivati et abondanti di frutti eccellentissimi e di buonissime viti”

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Aroma composition of young and aged Lugana and Verdicchio

AIM Verdicchio and Lugana are two Italian white wines produced in the Marche and Garda lake regions respectively. They are however obtained using grape varieties sharing the same genetic background, locally known as Verdicchio in Marche and Trebbiano di Soave in Garda. Anecdotal evidence suggests that these two wine types exhibit distinctive aroma features. The aim of this work was to explore the existence of a recognizable odour profile for Lugana and Verdicchio, and whether specific aroma chemical markers could be identified. METHODS 13 commercial wines, 6 Lugana and 7 Verdicchio were used. Sensory analysis was done using sorting task methodology, assessing only odor similarities. A total of 53 volatile compounds were identified and quantified GC-MS analysis. Aging behaviors were also evaluated after an accelerated aging at 40 ° C for 3 months. RESULTS HCA analysis of sorting task data identified indeed two groups: one characterized by floral and minty notes and mostly associated with Lugana wines, the other characterized by spicy and toasted aromas and mostly associated with Verdicchio. From a chemical point of view, major differences between the two wines types were observed for cis-3-hexenol, methionol, phenylethyl alcohol, and geraniol.

Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.