Terroir 2014 banner
IVES 9 IVES Conference Series 9 Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Abstract

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture. 

Seven demonstration sites, in France, Spain and Portugal, followed common protocols in order to quantify biodiversity in vineyard plots and evaluate its possible link with the surrounding landscape. In each area, arthropods were monitored on 25 selected plots, from 2011 to 2013. Arthropods were sampled by non-selective trapping stations set into vines and semi-natural habitats (2011) and exclusively inside vine plots (2012-2013). They were sorted out using the Rapid Biodiversity Assessment method. Then, abundance and richness indices were calculated. The landscape surrounding each trapping station (400m radius) was characterized through a GIS database. Then, indices such as proportion of semi-natural habitats have been calculated. 

Semi-natural habitats show higher arthropods richness than vineyards, with a significant difference in richness values of 20 to 50%, depending on demonstration sites. On all French demonstration sites, a significant positive correlation was shown between the proportion of semi-natural habitats in a 400 m buffer area and the arthropods richness inside the vine plot. These results support the action program of the BioDiVine project, which consists in encouraging landscape management actions such as planting hedgerows or restoring semi-natural elements connectivity. This can be an efficient way to support biodiversity and promote environmental-friendly wine production. Yet, these actions have to be collectively managed to reach their maximum efficiency, and require a huge coordination effort.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Josépha GUENSER (1), Séverine MARY (1), Benjamin PORTE (2), Joël ROCHARD (2), Maarten van HELDEN (3)

(1) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 
(2) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France. 
(3) Bordeaux Sciences Agro, ISVV, 1 Cours du Général de Gaulle, 33170 Gradignan, France.

Contact the author

Keywords

Biodiversity, GIS, landscape management, vineyard

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Influenza dell’esposizione del vigneto sulla maturazione dell’uva

Lo studio è stato condotto in vigneti commerciali di Vitis vinifera cv Nebbiolo localizzati in Piemonte, Italia del Nord-Ovest, intorno alla sommità di una collina. L’obiettivo dello studio è stato di determinare come l’esposizione del vigneto possa influenzare il comportamento vegetativo della vite, il manifestarsi delle fasi fenologiche, e la cinetica di maturazione dell’uva con particolare riguardo all’accumulo di antociani e flavonoli.

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Are Farm to fork strategy goals reasonable and achievable? State of the art of Península de Setubal’s winegrowers

The European Union’s “farm to fork” strategy sets out several objectives to be achieved by farmers, who, among others, relate to increasing biodiversity, protecting soils and reducing the use of pesticides. At a time when the amendments to the national plans of Sustainable Use of pesticides are being discussed, it is important to understand what the Setúbal Peninsula region status is.

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.