Terroir 2014 banner
IVES 9 IVES Conference Series 9 Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Abstract

Aromatic characteristics of wines are strongly influenced by agronomical and enological factors, depending of the climate, cultivar and winemaking process. Tropical wines are a new concept of vitiviniculture that is being developped in the Northeast of Brazil since the 80’s, located between 8-9º latitude of the South Hemisphere, where the second most important cultivar used for reds is Tempranillo. In this condition, vines produce grapes and enologists elaborate wines twice a year, because high temperatures, solar radiation and water availability for irrigation.

The aim of this work was to determine aromatic profiles of Tempranillo red wines, from three vintages, by using gas chromatography-mass spectrometer (GC-MS). The volatile compounds were extracted by SPME and analyzed on a Shimadzu GC 2010 Plus instrument. The volatile compounds were identified by comparison of the mass spectra recorded by the spectrometer database-NIST, as well as matching the retention indices and mass spectra with the literature data. The concentration of the volatile compounds was determined and quantified by an external calibration curve.

Results are discussed and showed that Tempranillo red wines presented different aroma profiles according to the vintage and seasons, and compounds were identified as esters, alcohols, acids, hydrocarbons and phenylpropanoid. The comparison of the results with data from the literature suggests that the Tempranillo tropical wines were influenced by climate and cultivar factors, presenting typicality that is highly valorized for wines from a determined region worldwide.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Kirley Marques CANUTO (1),, Edy Souza de BRITO (1), Juliane Barreto de OLIVEIRA (2), Ana Júlia de Brito ARAÚJO (3), Aline Camarão Telles BIASOTO (2), Tigressa Helena S. RODRIGUES (1), Hilton César R. MAGALHÃES (1), Giuliano Elias PEREIRA (4)

(1) Embrapa Tropical Agroindustry, Fortaleza-CE, Brazil
(2) Embrapa Tropical Semi-Arid, Petrolina-PE, Brazil
(3) IF Sertão, Petrolina-PE, Brazil

Contact the author

Keywords

Vitis vinifera L., grape; Tempranillo, tropical wines, volatile compounds, typicality

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Background: hydroxycinnamic acids (HCA), present in pulp and skin of grapes, are relevant compounds in red winemaking

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.