Terroir 2014 banner
IVES 9 IVES Conference Series 9 Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Abstract

Aromatic characteristics of wines are strongly influenced by agronomical and enological factors, depending of the climate, cultivar and winemaking process. Tropical wines are a new concept of vitiviniculture that is being developped in the Northeast of Brazil since the 80’s, located between 8-9º latitude of the South Hemisphere, where the second most important cultivar used for reds is Tempranillo. In this condition, vines produce grapes and enologists elaborate wines twice a year, because high temperatures, solar radiation and water availability for irrigation.

The aim of this work was to determine aromatic profiles of Tempranillo red wines, from three vintages, by using gas chromatography-mass spectrometer (GC-MS). The volatile compounds were extracted by SPME and analyzed on a Shimadzu GC 2010 Plus instrument. The volatile compounds were identified by comparison of the mass spectra recorded by the spectrometer database-NIST, as well as matching the retention indices and mass spectra with the literature data. The concentration of the volatile compounds was determined and quantified by an external calibration curve.

Results are discussed and showed that Tempranillo red wines presented different aroma profiles according to the vintage and seasons, and compounds were identified as esters, alcohols, acids, hydrocarbons and phenylpropanoid. The comparison of the results with data from the literature suggests that the Tempranillo tropical wines were influenced by climate and cultivar factors, presenting typicality that is highly valorized for wines from a determined region worldwide.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Kirley Marques CANUTO (1),, Edy Souza de BRITO (1), Juliane Barreto de OLIVEIRA (2), Ana Júlia de Brito ARAÚJO (3), Aline Camarão Telles BIASOTO (2), Tigressa Helena S. RODRIGUES (1), Hilton César R. MAGALHÃES (1), Giuliano Elias PEREIRA (4)

(1) Embrapa Tropical Agroindustry, Fortaleza-CE, Brazil
(2) Embrapa Tropical Semi-Arid, Petrolina-PE, Brazil
(3) IF Sertão, Petrolina-PE, Brazil

Contact the author

Keywords

Vitis vinifera L., grape; Tempranillo, tropical wines, volatile compounds, typicality

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.