Terroir 2014 banner
IVES 9 IVES Conference Series 9 Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Abstract

Aromatic characteristics of wines are strongly influenced by agronomical and enological factors, depending of the climate, cultivar and winemaking process. Tropical wines are a new concept of vitiviniculture that is being developped in the Northeast of Brazil since the 80’s, located between 8-9º latitude of the South Hemisphere, where the second most important cultivar used for reds is Tempranillo. In this condition, vines produce grapes and enologists elaborate wines twice a year, because high temperatures, solar radiation and water availability for irrigation.

The aim of this work was to determine aromatic profiles of Tempranillo red wines, from three vintages, by using gas chromatography-mass spectrometer (GC-MS). The volatile compounds were extracted by SPME and analyzed on a Shimadzu GC 2010 Plus instrument. The volatile compounds were identified by comparison of the mass spectra recorded by the spectrometer database-NIST, as well as matching the retention indices and mass spectra with the literature data. The concentration of the volatile compounds was determined and quantified by an external calibration curve.

Results are discussed and showed that Tempranillo red wines presented different aroma profiles according to the vintage and seasons, and compounds were identified as esters, alcohols, acids, hydrocarbons and phenylpropanoid. The comparison of the results with data from the literature suggests that the Tempranillo tropical wines were influenced by climate and cultivar factors, presenting typicality that is highly valorized for wines from a determined region worldwide.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Kirley Marques CANUTO (1),, Edy Souza de BRITO (1), Juliane Barreto de OLIVEIRA (2), Ana Júlia de Brito ARAÚJO (3), Aline Camarão Telles BIASOTO (2), Tigressa Helena S. RODRIGUES (1), Hilton César R. MAGALHÃES (1), Giuliano Elias PEREIRA (4)

(1) Embrapa Tropical Agroindustry, Fortaleza-CE, Brazil
(2) Embrapa Tropical Semi-Arid, Petrolina-PE, Brazil
(3) IF Sertão, Petrolina-PE, Brazil

Contact the author

Keywords

Vitis vinifera L., grape; Tempranillo, tropical wines, volatile compounds, typicality

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Stabulation (lees stirring) in must as a method for aroma intensification: A comparison with skin contact and a classical version of Traminer and Sauvignon blanc in Austria

In the course of this study, stabilisation (lees stirring in unclarified must) with skin contact and classic white wine vinification were compared for the Sauvignon blanc and Traminer varieties in Austria. The test wines were analysed for the volatile substances esters, free monoterpenes and fruity thiols

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Distinctive flavour or taint? The case of smoky characters in wine

Forest fires in the vicinity of vineyards have significantly increased in the last decade and are a concern for grapegrowers and winemakers in many wine producing countries. The fires cause smoke drift throughout vineyards which cannot be avoided and may result in the production of wines described as ‘smoke tainted’. Such wines are characterized by undesirable sensory characters described as ‘smoky’, ‘burnt’, ‘ash’ aromas and flavours, and also may cause a lingering, unpleasant ashy aftertaste [1; 2].