Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Abstract

Spatial climate data at a 1 km resolution has allowed for a comprehensive mapping and assessment of viticulture DOs regions in Portugal. Overall the 50 regions and sub-regions in Portugal range from just over 1200 GDD in the Vinho Verde to just over 2300 GDD in Alentejo with 34% of the wine producing areas falling in a Region II, 28% a Region III and 30% a Region IV on the Winkler classification system. On the Huglin Index the sub-regions range from just over 1600 to nearly 2700, representing HI climate types from Very Cool to Very Warm. For the GST index the sub-regions have a range from 15.7ºC to 20.7ºC, representing Cool, Intermediate and Hot climate maturity suitability on the GST. However, the results show that the spatial variability of climate within the regions, can be significant, with some regions representing as many as five climate classes suitable for viticulture. The results show how important it is to develop within region assessments of climate suitability for viticulture. Finally the diversity of climate types suitable for viticulture found in the Portuguese Wine Regions shows the broad range of wine styles that can be produced in the country.

DOI:

Publication date: August 27, 2020

Issue: Terroir 2012

Type: Article

Authors

Gregory V. JONES (1), Fernando ALVES (2)

(1) Department of Environmental Studies, Southern Oregon University, 1250 Siskiyou Boulevard, Ashland, Oregon 97520, USA
(2) ADVID, Associação para o Desenvolvimento da Viticultura Duriense, Qta. St. Maria, APT 137, 5050-106 Godim, Portugal

Contact the author

Keywords

viticulture, wine, climate, Portugal

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

Study of the oenological potential of varieties resistant to cryptogamic diseases and drought to anticipate varietal selection in occitanie

In the context of climate change and the growing need to reduce the use of phytosanitary products, the exploration of disease-resistant grape varieties and/or adapted to drought conditions is becoming crucial for the wine industry in certain regions of France, such as Occitanie. Currently, exploring the oenological potential of varieties by analyzing their biochemical composition before and after winemaking comes rather late in the varietal selection process.

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.