Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Abstract

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

In this study we present results of the effects of microclimate on the composition of white Riesling (Vitis vinifera L.) under different row orientations. The microclimatic parameters monitored in this study were canopy humidity and temperature, berry surface temperature using infrared thermography, ambient humidity, temperature, wind speed and irradiation parameters. Bunches of different exposure within the canopy of three different row orientations (North to South; East to West; South-West to North-East) were monitored. In addition to the natural environment, some bunches were sheltered in boxes to exclude any impact of light. Further, a defoliation treatment was established to provide maximum light interception.

Results of the study showed that bunches under higher radiation interception, had a faster malic acid degradation and berries were accumulating more flavonols, while the differences in sugar accumulation seemed to depend on leaf peak temperatures rather than on the exposure of the berries.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Matthias FRIEDEL (1), Michael WEBER (1), Jeanette ZACHARIAS (2), Claus-Dieter PATZ (2), Manfred STOLL (1)

(1) Geisenheim Research Center, Department of Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) Geisenheim Research Center, Department of Wine Chemistry and Beverage Technology Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Row Orientation, Riesling, Microclimate, Berry Temperature, Flavonoids

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Vine selection in France: An assessment after more than 60 years of work

It was at the end of the second world war that professor Branas laid the foundations of french vine selection. He was also behind the creation of domaine de vassal (1949) and antav (1962), which were to become the bridgeheads of the french strategy for the conservation, selection and multiplication of viticultural diversity. Initially based on visually virus-symptom-free massal selections, with the main aim of providing healthy, clearly-identified plant material, the process evolved as knowledge gained towards clonal selection.

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.