Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Abstract

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

In this study we present results of the effects of microclimate on the composition of white Riesling (Vitis vinifera L.) under different row orientations. The microclimatic parameters monitored in this study were canopy humidity and temperature, berry surface temperature using infrared thermography, ambient humidity, temperature, wind speed and irradiation parameters. Bunches of different exposure within the canopy of three different row orientations (North to South; East to West; South-West to North-East) were monitored. In addition to the natural environment, some bunches were sheltered in boxes to exclude any impact of light. Further, a defoliation treatment was established to provide maximum light interception.

Results of the study showed that bunches under higher radiation interception, had a faster malic acid degradation and berries were accumulating more flavonols, while the differences in sugar accumulation seemed to depend on leaf peak temperatures rather than on the exposure of the berries.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Matthias FRIEDEL (1), Michael WEBER (1), Jeanette ZACHARIAS (2), Claus-Dieter PATZ (2), Manfred STOLL (1)

(1) Geisenheim Research Center, Department of Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) Geisenheim Research Center, Department of Wine Chemistry and Beverage Technology Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Row Orientation, Riesling, Microclimate, Berry Temperature, Flavonoids

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.