Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Abstract

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

In this study we present results of the effects of microclimate on the composition of white Riesling (Vitis vinifera L.) under different row orientations. The microclimatic parameters monitored in this study were canopy humidity and temperature, berry surface temperature using infrared thermography, ambient humidity, temperature, wind speed and irradiation parameters. Bunches of different exposure within the canopy of three different row orientations (North to South; East to West; South-West to North-East) were monitored. In addition to the natural environment, some bunches were sheltered in boxes to exclude any impact of light. Further, a defoliation treatment was established to provide maximum light interception.

Results of the study showed that bunches under higher radiation interception, had a faster malic acid degradation and berries were accumulating more flavonols, while the differences in sugar accumulation seemed to depend on leaf peak temperatures rather than on the exposure of the berries.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Matthias FRIEDEL (1), Michael WEBER (1), Jeanette ZACHARIAS (2), Claus-Dieter PATZ (2), Manfred STOLL (1)

(1) Geisenheim Research Center, Department of Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) Geisenheim Research Center, Department of Wine Chemistry and Beverage Technology Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Row Orientation, Riesling, Microclimate, Berry Temperature, Flavonoids

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Terroirs and legal protection

Le concept AOC permet, par une délimitation précise, la mise en valeur de terroirs particulièrement adaptés à la viticulture. Seuls les terroirs ainsi identifiés peuvent produire des vins portant le nom de l’AOC. Le nom de cette AOC ne peut être utilisé que pour des vins issus de terroirs compris dans l’aire d’appellation, sous peine de sanctions pénales. La délimitation ainsi opérée participe à la protection du nom de l’AOC. A l’inverse, le terroir délimité n’est pas protégé.

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).