Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Abstract

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

In this study we present results of the effects of microclimate on the composition of white Riesling (Vitis vinifera L.) under different row orientations. The microclimatic parameters monitored in this study were canopy humidity and temperature, berry surface temperature using infrared thermography, ambient humidity, temperature, wind speed and irradiation parameters. Bunches of different exposure within the canopy of three different row orientations (North to South; East to West; South-West to North-East) were monitored. In addition to the natural environment, some bunches were sheltered in boxes to exclude any impact of light. Further, a defoliation treatment was established to provide maximum light interception.

Results of the study showed that bunches under higher radiation interception, had a faster malic acid degradation and berries were accumulating more flavonols, while the differences in sugar accumulation seemed to depend on leaf peak temperatures rather than on the exposure of the berries.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Matthias FRIEDEL (1), Michael WEBER (1), Jeanette ZACHARIAS (2), Claus-Dieter PATZ (2), Manfred STOLL (1)

(1) Geisenheim Research Center, Department of Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) Geisenheim Research Center, Department of Wine Chemistry and Beverage Technology Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author

Keywords

Row Orientation, Riesling, Microclimate, Berry Temperature, Flavonoids

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Agronomic and qualitative effects of early leaf removal on cv.

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine.

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.