Terroir 2012 banner
IVES 9 IVES Conference Series 9 Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

Abstract

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric Modeling System (RAMS) and nested grids, providing downscaled datasets of 5 km resolution over France. Simulations were performed for two periods: 1991-2000, to assess the method against observations and quantify the large-scale induced biases; and 2041-2050 as near future climate projection under the SRES A2 scenario conditions. Results for July maximum temperatures, focussing on 6 wine regions, show RAMS contribution in reducing the large-scale bias, leading to a better assessment of climate change, yet with spatial differences.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Valérie BONNARDOT (1), Sylvie CAUTENET (2), Guy CAUTENET (3), Hervé QUENOL (1)

(1) LETG-Rennes COSTEL (UMR 6554 CNRS), Université Rennes 2, Place du Recteur Henri le Moal, 35043 Rennes Cedex, France

(2) Laboratoire de Météorologie Physique (LaMP), UMR 6016 CNRS, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France

Contact the author

Keywords

Mesoscale climate modeling, SRES A2 scenario, July maximum temperature, wine regions, France

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Preliminary results of the effect of post veraison pre-pruning on grape and wine composition in Tannat and Merlot

The seasonal’s climatic conditions determine the composition of grapes at harvest as they affect the vine’s physiology and development. High temperatures during the grape ripening period cause a high accumulation of sugars and degradation of fruit acidity ,and alter the synthesis of polyphenols. Therefore, some vineyard management can be applied in order to modify grapevine impact on climate variability. One example is the pre-pruning at the beginning of grape ripening, which can delay the ripening period and modify the composition of the grapes at harvest. This work aims to evaluate the pre-pruning field technique on yield components and alcohol content in wines of Tannat and Merlot varieties.

Observatoire Grenache en vallée du Rhône : démarche et premiers résultats après une année d’étude

Face à l’enjeu d’affirmer et de mieux comprendre la spécificité des vins en relation avec leur origine, la notion de « terroir », avec la richesse de sens et la diversité des perspectives qui l’éclairent, se révèle la clef de voûte de la production et de la valorisation de vins personnalisés et typiques. Asseoir la connaissance des principaux terroirs de la Vallée du Rhône sur des bases autres que celles, jusqu’alors essentiellement empiriques, invoquées dans la seconde grande région française productrice de vins d’AOC, constitue un projet conforme à l’intérêt voué à cet enjeu d’actualité.

Effect of plant fining agents in the must flotation process. Functional characterization

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.