Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Ancient zoning in the world (T2010) 9 Storia del prosecco e del suo territorio di produzione: un percorso di studi in continuo progresso

Storia del prosecco e del suo territorio di produzione: un percorso di studi in continuo progresso

Abstract

Nella realtà viticola Italiana il Prosecco è uno degli esempi più evidenti di un percorso storico che ha saputo valorizzare lo stretto legame tra vitigno e territorio d’origine.A partire dalla fine del ‘700, periodo nel quale le prime testimonianze riportano la presenza di questo vitigno nel luogo che ne ha dato fama e notorietà, diversi studi hanno contribuito all’individuazione degli elementi storici ed ambientali attestanti l’indiscusso valore di questo contesto unico e irripetibile.Le ricerche dell’ ‘800 hanno preso le mosse da un’approfondita caratterizzazione ampelografica del vitigno, dei suoi biotipi già anticamente noti e delle loro potenzialità viticole ed enologiche. Nel corso del ‘900 l’attenzione si è poi spostata anche all’ambiente di coltivazione, cercando di estrapolarne i principali caratteri morfologici e climatici e di coglierne gli effetti sulla successione fenologica, sulla produzione e sulla macrostruttura dell’uva. Negli anni ’90 l’esigenza di applicare nella pratica agricola quotidiana i risultati scientifici ottenuti in questi primi studi e la concomitante evoluzione delle metodologie di indagine, ha portato all’approccio pluridisciplinare che caratterizza gli attuali studi di zonazione. Grazie a questi, e sulla scorta delle informazioni climatiche e podologiche acquisite e a tecniche e strumentazioni sempre più evoluti sono stati impostati due importanti lavori di zonazione: il primo riguardante l’area orientale della DOCG Conegliano-Valdobbiadene o DOC Colli di Conegliano (1997-1999) e il successivo esteso alla parte occidentale della DOCG Conegliano-Valdobbiadene (2003-2006). Queste indagini hanno portato ad un approfondita conoscenza dell’areale produttivo storico di questo vitigno, evidenziando come a diverse condizioni climatiche e podologiche il Prosecco risponda con caratteristiche produttive diverse (rese, contenuti zuccherini, contenuti aromatici). Ciò concorre a rafforzare il legame tra vitigno e territorio, confermandone il ruolo fondamentale nel determinare la tipicità e l’unicità di questo vino.

English version: The Prosecco is one of the most important examples in Italy of a territory that through a long study process established its success in the strong linkage between wine and its original area. Since the end of 1700, when first evidences can be found about the presence of the Prosecco in this territory, many studies have contributed in better understanding the historical and environmental elements accountable for its success and notoriety. In 1800 the research started with the amphelographic characterization of the variety and with the study of its different biotipes and their viticultural and oenological potential. In the curse of 1900 the attention of reaserchers moved to the environment, with the aim at identifying the factors with major impact on vine physiology, yield and quality. The need to practically apply the results of these first scientific studies, together with the development of new technologies, led in the 90s to the multidisciplinary approach that characterizes the modern zoning studies. Basing on the pedologic and climatic information collected along two centuries, two important zoning projects were developed: the first (1997-1999) involved the Colli di Conegliano AOC district (Eastern part of the Conegliano-Valdobbiadene AOCG), while the second (2003-2006) focused on the Western part of the Conegliano-Valdobbiadene AOCG. These two investigations led to a better knowledge of the historical Prosecco area, highlighting how different environmental conditions may have an impact on the performance of this variety with important effects on yield, sugar content and aromatic composition of the grapes. The results contributed to strengthen the linkage between Prosecco and its territory and confirmed the importance of the production area in determining the uniqueness and tipicality of this product.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2010

Type: Article

Authors

F. Gaiotti, P. Marcuzzo, F. Battista, L. Lovat, D. Tomasi

CRA-Centro di Ricerca per la Viticoltura, Viale 28 Aprile 26, Conegliano, Italy

Contact the author

Keywords

Zoning, Prosecco, Conegliano, Valdobbiadene, Climate, Soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].