Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Ancient zoning in the world (T2010) 9 Storia del prosecco e del suo territorio di produzione: un percorso di studi in continuo progresso

Storia del prosecco e del suo territorio di produzione: un percorso di studi in continuo progresso

Abstract

Nella realtà viticola Italiana il Prosecco è uno degli esempi più evidenti di un percorso storico che ha saputo valorizzare lo stretto legame tra vitigno e territorio d’origine.A partire dalla fine del ‘700, periodo nel quale le prime testimonianze riportano la presenza di questo vitigno nel luogo che ne ha dato fama e notorietà, diversi studi hanno contribuito all’individuazione degli elementi storici ed ambientali attestanti l’indiscusso valore di questo contesto unico e irripetibile.Le ricerche dell’ ‘800 hanno preso le mosse da un’approfondita caratterizzazione ampelografica del vitigno, dei suoi biotipi già anticamente noti e delle loro potenzialità viticole ed enologiche. Nel corso del ‘900 l’attenzione si è poi spostata anche all’ambiente di coltivazione, cercando di estrapolarne i principali caratteri morfologici e climatici e di coglierne gli effetti sulla successione fenologica, sulla produzione e sulla macrostruttura dell’uva. Negli anni ’90 l’esigenza di applicare nella pratica agricola quotidiana i risultati scientifici ottenuti in questi primi studi e la concomitante evoluzione delle metodologie di indagine, ha portato all’approccio pluridisciplinare che caratterizza gli attuali studi di zonazione. Grazie a questi, e sulla scorta delle informazioni climatiche e podologiche acquisite e a tecniche e strumentazioni sempre più evoluti sono stati impostati due importanti lavori di zonazione: il primo riguardante l’area orientale della DOCG Conegliano-Valdobbiadene o DOC Colli di Conegliano (1997-1999) e il successivo esteso alla parte occidentale della DOCG Conegliano-Valdobbiadene (2003-2006). Queste indagini hanno portato ad un approfondita conoscenza dell’areale produttivo storico di questo vitigno, evidenziando come a diverse condizioni climatiche e podologiche il Prosecco risponda con caratteristiche produttive diverse (rese, contenuti zuccherini, contenuti aromatici). Ciò concorre a rafforzare il legame tra vitigno e territorio, confermandone il ruolo fondamentale nel determinare la tipicità e l’unicità di questo vino.

English version: The Prosecco is one of the most important examples in Italy of a territory that through a long study process established its success in the strong linkage between wine and its original area. Since the end of 1700, when first evidences can be found about the presence of the Prosecco in this territory, many studies have contributed in better understanding the historical and environmental elements accountable for its success and notoriety. In 1800 the research started with the amphelographic characterization of the variety and with the study of its different biotipes and their viticultural and oenological potential. In the curse of 1900 the attention of reaserchers moved to the environment, with the aim at identifying the factors with major impact on vine physiology, yield and quality. The need to practically apply the results of these first scientific studies, together with the development of new technologies, led in the 90s to the multidisciplinary approach that characterizes the modern zoning studies. Basing on the pedologic and climatic information collected along two centuries, two important zoning projects were developed: the first (1997-1999) involved the Colli di Conegliano AOC district (Eastern part of the Conegliano-Valdobbiadene AOCG), while the second (2003-2006) focused on the Western part of the Conegliano-Valdobbiadene AOCG. These two investigations led to a better knowledge of the historical Prosecco area, highlighting how different environmental conditions may have an impact on the performance of this variety with important effects on yield, sugar content and aromatic composition of the grapes. The results contributed to strengthen the linkage between Prosecco and its territory and confirmed the importance of the production area in determining the uniqueness and tipicality of this product.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2010

Type: Article

Authors

F. Gaiotti, P. Marcuzzo, F. Battista, L. Lovat, D. Tomasi

CRA-Centro di Ricerca per la Viticoltura, Viale 28 Aprile 26, Conegliano, Italy

Contact the author

Keywords

Zoning, Prosecco, Conegliano, Valdobbiadene, Climate, Soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.