Terroir 2010 banner
IVES 9 IVES Conference Series 9 New methods and technologies to describe the environment in terroir studies

New methods and technologies to describe the environment in terroir studies

Abstract

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics. The development of automatic weather stations allows more dense registration of climatic parameters like temperature and rainfall. Solar radiation can be remotely sensed with satellites and rainfall with radar. Geographic Information Systems (GIS) allow combining various sources of spatialized environmental factors. The development of high throughput indicators of grapevine development, vine water status and vine nitrogen status allows spatialized validation of vine responses to environmental factors.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

VAN LEEUWEN Cornelis (1), BOIS Benjamin (2), DE RESSEGUIER Laure (1), PERNET David (3) and ROBY Jean-Philippe (1)

(1) ENITA de Bordeaux, UMR EGFV, ISVV, 1, Cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex
(2) Université de Bourgogne, UMR CRC, CNRS, 6 Bd Gabriel, 21000 Dijon, France 3SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France

Keywords

Terroir, vine, Digital Elevation Model (DEM), Geophysics, Ground Penetrating Radar (GPM), Geographic Information System (GIS), Global Positioning System (GPS), remote sensing

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage.

Facteurs physiques et biologiques affectant la production viticole et vinicole de la région avec dénomination d’origine “Condado de Huelva” (SW d’Espagne)

Les facteurs physiques et biologiques du milieu naturel affectant la production viticole de la R.D.O. “Condado de Huelva” et quelques relations les concernant sont étudiés dans les systèmes de la production vinicole ; le bon fonctionnement du Vignoble ayant besoin par ailleurs, du concours d’autres facteurs (Reynier, 1989 ; Paneque et al., 1996, a,b).

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].