Terroir 2010 banner
IVES 9 IVES Conference Series 9 New methods and technologies to describe the environment in terroir studies

New methods and technologies to describe the environment in terroir studies

Abstract

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics. The development of automatic weather stations allows more dense registration of climatic parameters like temperature and rainfall. Solar radiation can be remotely sensed with satellites and rainfall with radar. Geographic Information Systems (GIS) allow combining various sources of spatialized environmental factors. The development of high throughput indicators of grapevine development, vine water status and vine nitrogen status allows spatialized validation of vine responses to environmental factors.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

VAN LEEUWEN Cornelis (1), BOIS Benjamin (2), DE RESSEGUIER Laure (1), PERNET David (3) and ROBY Jean-Philippe (1)

(1) ENITA de Bordeaux, UMR EGFV, ISVV, 1, Cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex
(2) Université de Bourgogne, UMR CRC, CNRS, 6 Bd Gabriel, 21000 Dijon, France 3SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France

Keywords

Terroir, vine, Digital Elevation Model (DEM), Geophysics, Ground Penetrating Radar (GPM), Geographic Information System (GIS), Global Positioning System (GPS), remote sensing

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Rapid damage assessment and grapevine recovery after fire

There is increasing scientific consensus that climate changeis the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins.

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.