Terroir 2010 banner
IVES 9 IVES Conference Series 9 Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Abstract

Atmospheric and statistical models were used to increase understanding of potential climatic impacts, resulting from mesoscale physical processes that cause significant temperature variability for viticulture within the Stellenbosch Wine of Origin district. Hourly temperature values from 16 automatic weather stations and 40 tinytag data loggers located in the vineyards were analysed. The 5th of March 2009 was selected as an example to study the cooling potential of the terroirs in radiative weather conditions during grape ripening time. Differences reached more than 10°C between vineyards and can be considered as significant for viticulture. Numerical simulations using the Regional Atmospheric Modeling System were performed. Results for a horizontal grid resolution of 200 m over the Stellenbosch wine region for the 5th of March 2009 showed that the temperature difference was due to cool air accumulation with land and downslope breezes. Surface temperature data recorded in the vineyards were used to produce, by means of multicriteria statistical modelling, which took environmental factors into account, a map of spatial distribution of the daily minimum temperature at a fine scale (90 m). The use of the two models represented an interesting tool to help in identifying the cooling potential of locations for viticulture and, at a later stage, studying the impacts of climate change at fine scales.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

V. Bonnardot (1), V. Carey (2), M. Madelin (3), S. Cautenet (4), Z. Coetzee (2), H. Quénol (1)

(1) COSTEL-LETG, UMR 6554 CNRS, Université Rennes2, Place du Recteur H. Le Moal, 35043 Rennes
(2) Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1 Matieland 7602, RSA.
(3) PRODIG, UMR 8586 CNRS, Université Paris 7 Diderot, 2 rue Valette, 75005 Paris, France.
(4) LaMP, UMR 6016 CNRS, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière, France

Contact the author

Keywords

Atmospheric modelling, statistical modelling, cooling potential, vineyard, South Africa

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Brettanomyces bruxellensis and off-odours: genetic and proteomic approaches to unravel the molecular mechanism of ethyl-phenols production

Brettanomyces/Dekkera yeasts in wine are able to produce various spoilage compounds that are, at high concentration, detrimental to wine quality. The principal spoiler compounds associated with Brettanomyces spp. are vinyl and ethyl-phenols that are responsible for off- odours described as “animal”, “medicinal”, “sweaty leather”, “barnyard”, “spicy” and “clove-like”.

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.