Terroir 2010 banner
IVES 9 IVES Conference Series 9 Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Abstract

Atmospheric and statistical models were used to increase understanding of potential climatic impacts, resulting from mesoscale physical processes that cause significant temperature variability for viticulture within the Stellenbosch Wine of Origin district. Hourly temperature values from 16 automatic weather stations and 40 tinytag data loggers located in the vineyards were analysed. The 5th of March 2009 was selected as an example to study the cooling potential of the terroirs in radiative weather conditions during grape ripening time. Differences reached more than 10°C between vineyards and can be considered as significant for viticulture. Numerical simulations using the Regional Atmospheric Modeling System were performed. Results for a horizontal grid resolution of 200 m over the Stellenbosch wine region for the 5th of March 2009 showed that the temperature difference was due to cool air accumulation with land and downslope breezes. Surface temperature data recorded in the vineyards were used to produce, by means of multicriteria statistical modelling, which took environmental factors into account, a map of spatial distribution of the daily minimum temperature at a fine scale (90 m). The use of the two models represented an interesting tool to help in identifying the cooling potential of locations for viticulture and, at a later stage, studying the impacts of climate change at fine scales.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

V. Bonnardot (1), V. Carey (2), M. Madelin (3), S. Cautenet (4), Z. Coetzee (2), H. Quénol (1)

(1) COSTEL-LETG, UMR 6554 CNRS, Université Rennes2, Place du Recteur H. Le Moal, 35043 Rennes
(2) Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1 Matieland 7602, RSA.
(3) PRODIG, UMR 8586 CNRS, Université Paris 7 Diderot, 2 rue Valette, 75005 Paris, France.
(4) LaMP, UMR 6016 CNRS, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière, France

Contact the author

Keywords

Atmospheric modelling, statistical modelling, cooling potential, vineyard, South Africa

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

Grape variety identification and detection of terroir effects from satellite images

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

Defoliation timing impacts berry secondary metabolites and sunburn damage

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations.