Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Abstract

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects. This research was carried out during 2008 and 2009 in 4 Tannat cultivar vineyards, in 3 different climatic regions of Uruguay; soil water reserve capacity was similar. By means of climate data, and berry composition and physiological plant response indicators analysis, it was established which were the most influential variables giving specificity and potential of wine in each production area. Climatic factors allowing discrimination of those areas were: water balance during berry ripening, rain amount by crop phoenological stages, degree days during ripening. Referring to plant response: exposed leaf surface and ripening phase duration (in Julian days) were the most important factors followed by predawn leaf water potential at flowering phase, and berry yield. With regard to berry composition the most important factors were sugars and malic acid contents followed by anthocyanic potential and tartaric acid content. These factors could statistically separate the grape growing areas independently of the year effect. We conclude that plant response and berry composition were strongly influenced by the environment. From this the main factors were water supply and temperature during ripening phase.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

M. Ferrer (1) ;G. González Neves (1,2); G. Camussi (1); G. Echeverria (1), R. Avondet (1), M. Fourment (1) ; J. Salvarrey (1) ; A. Montaña (1) ; G. Favre (1)

(1) Facultad de Agronomía-Montevideo, Uruguay
(2) Instituto Nacional Vitivinicultura-Uruguay

Contact the author

Keywords

Tannat – zonification- grapes caracteristics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity. Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA). Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes: 1. A direct or indirect action on primary varietal aroma and on its evolution during wine aging. 2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation during anoxic aging. 3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms: 1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans. Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg.

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.