Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Abstract

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects. This research was carried out during 2008 and 2009 in 4 Tannat cultivar vineyards, in 3 different climatic regions of Uruguay; soil water reserve capacity was similar. By means of climate data, and berry composition and physiological plant response indicators analysis, it was established which were the most influential variables giving specificity and potential of wine in each production area. Climatic factors allowing discrimination of those areas were: water balance during berry ripening, rain amount by crop phoenological stages, degree days during ripening. Referring to plant response: exposed leaf surface and ripening phase duration (in Julian days) were the most important factors followed by predawn leaf water potential at flowering phase, and berry yield. With regard to berry composition the most important factors were sugars and malic acid contents followed by anthocyanic potential and tartaric acid content. These factors could statistically separate the grape growing areas independently of the year effect. We conclude that plant response and berry composition were strongly influenced by the environment. From this the main factors were water supply and temperature during ripening phase.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

M. Ferrer (1) ;G. González Neves (1,2); G. Camussi (1); G. Echeverria (1), R. Avondet (1), M. Fourment (1) ; J. Salvarrey (1) ; A. Montaña (1) ; G. Favre (1)

(1) Facultad de Agronomía-Montevideo, Uruguay
(2) Instituto Nacional Vitivinicultura-Uruguay

Contact the author

Keywords

Tannat – zonification- grapes caracteristics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.