Terroir 2010 banner
IVES 9 IVES Conference Series 9 Grape variety identification and detection of terroir effects from satellite images

Grape variety identification and detection of terroir effects from satellite images

Abstract

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile. Statistical techniques (ANOVA, cluster and discriminant analysis) are applied. Results indicate that there are consistent spectral features, mainly in the near infrared, which can lead to variety identification. These features are affected by terroir effects, since the reflectance spectra showed similarities between regions, especially for Cabernet Sauvignon; phenological factors further contribute to variety differentiation. An additional search of terroir effects is made on some plots of Sangiovese, located in Tuscany and south Brazil; in this case, differences in spectral features are more important, suggesting that clonal differences may also play a role. It is concluded that remote sensing data are effective to terroir and grape variety studies.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Cemin (1), J. R. Ducati (2)

(1) Instituto de Saneamento Ambiental. Universidade de Caxias do Sul. Rua Francisco Getúlio Vargas 1130, CEP 95070-560, Caxias do Sul, Brazil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia. Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, Brazil

Contact the author

Keywords

remote sensing – satellite images – spectral features

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

New oenological technology for adaptation to climate change: reduction of alcohol content during wine fermentation through stripping, with fermentative CO2

The capture and valorization of fermentative CO2 have been developed for several years by the company w platform for internal uses, notably in the cellars: inerting, cooling, reduction of water consumption, extraction, with aroma valorization. In a context of climatic warming during the vegetative cycle, grapes are currently harvested with a significant sugar concentration, a phenomenon that is expected to intensify in the coming decades. The high alcohol content of the resulting wines goes against the demand of customers who are seeking high-quality wines with less alcohol.

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.