Terroir 2010 banner
IVES 9 IVES Conference Series 9 Grape variety identification and detection of terroir effects from satellite images

Grape variety identification and detection of terroir effects from satellite images

Abstract

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile. Statistical techniques (ANOVA, cluster and discriminant analysis) are applied. Results indicate that there are consistent spectral features, mainly in the near infrared, which can lead to variety identification. These features are affected by terroir effects, since the reflectance spectra showed similarities between regions, especially for Cabernet Sauvignon; phenological factors further contribute to variety differentiation. An additional search of terroir effects is made on some plots of Sangiovese, located in Tuscany and south Brazil; in this case, differences in spectral features are more important, suggesting that clonal differences may also play a role. It is concluded that remote sensing data are effective to terroir and grape variety studies.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Cemin (1), J. R. Ducati (2)

(1) Instituto de Saneamento Ambiental. Universidade de Caxias do Sul. Rua Francisco Getúlio Vargas 1130, CEP 95070-560, Caxias do Sul, Brazil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia. Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, Brazil

Contact the author

Keywords

remote sensing – satellite images – spectral features

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Determination of Aroma Compounds in Grape Mash under Conditions of Tasting by On-line Near-Infrared Spectroscopy

The production of high-quality wines requires the use of high-quality grapes. Some compounds originating from grapes may negatively influence the odour and flavour of the resulting wine in their original form or as precursors for off-odours and –flavours. Therefore, a rapid evaluation of the grapes directly upon receival at the winery is advantageous. Up to now, grape aroma is mainly evaluated by tasting, however, this leads to subjective results. The use of near-infrared (NIR) spectroscopy allows a rapid, objective and destruction-free analysis without previous sample preparation. Moreover, the measurement can be integrated into an existing process without additional sampling.