Terroir 2010 banner
IVES 9 IVES Conference Series 9 Grape variety identification and detection of terroir effects from satellite images

Grape variety identification and detection of terroir effects from satellite images

Abstract

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile. Statistical techniques (ANOVA, cluster and discriminant analysis) are applied. Results indicate that there are consistent spectral features, mainly in the near infrared, which can lead to variety identification. These features are affected by terroir effects, since the reflectance spectra showed similarities between regions, especially for Cabernet Sauvignon; phenological factors further contribute to variety differentiation. An additional search of terroir effects is made on some plots of Sangiovese, located in Tuscany and south Brazil; in this case, differences in spectral features are more important, suggesting that clonal differences may also play a role. It is concluded that remote sensing data are effective to terroir and grape variety studies.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

G. Cemin (1), J. R. Ducati (2)

(1) Instituto de Saneamento Ambiental. Universidade de Caxias do Sul. Rua Francisco Getúlio Vargas 1130, CEP 95070-560, Caxias do Sul, Brazil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia. Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, Brazil

Contact the author

Keywords

remote sensing – satellite images – spectral features

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Terroir and climate: the role of homoclime matching

Climate is an important component or determinant of terroir, especially at the regional level. One can define three levels of terroir. These are the macro– or regional scale, which applies over tens of kilometres of the landscape. The second level is the meso- scale, which applies over kilometres or hundreds of meters, at the individual vineyard scale.

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines.