Terroir 2010 banner
IVES 9 IVES Conference Series 9 A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

Abstract

The aim of the project was to characterize the Premium Denomination of Guaranteed Origin (DOCG) “Colline Teramane” wine-growing region and to delineate and define homogeneous zones (terroir units) within it, by applying a multivariate clustering approach combined with geomatics. The inventory, characterization and classification of the land resources included components of climate (temperature and rainfall from meteorological stations), landform (Digital Elevation Model) and lithology (geolithologic map). Managing of environmental variables was performed using a GIS. From the environmental variables, vine-related derived indices (bioclimatic: Huglin index, cool night index, Riberau-Gayon-Peynaud index; and morphologic: Aspect, Topographic Wetness Index, Curvature, Slope, Incoming Solar Radiation) were calculated, spatialized and implemented to the GIS. Then, normalized variable values for each raster cell were use in a PCA followed by a multivariate clustering algorithm (Isodata) to obtain a continuous morpho-climatic map, in which each cluster represented a unit or zone. Finally, the morpho-climatic map obtained was overlaid with the geolithologic map. The result shows different morpho-climatic conditions located over different lithotypes.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

Jose Carlos Herrera Nuñez (1), Solange Ramazzotti (1), Michele Pisante (1)

(1) Agronomy and Crop Sciences Research and Education Center, Department of Food Science,
University of Teramo, via C. Lerici 1, 64023 Mosciano Sant’Angelo (TE), Italy

Contact the author

Keywords

Geomatics, GIS, Agro-ecological zoning, multivariate clustering, terroir unit

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced.

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Evaluating the suitability of hyper- and multispectral imaging to detect endogenic diseases in grapevine

Endogenic diseases often arise from pathogens that exist within the plant tissue, including fungi, bacteria, and viruses, which can remain latent and then emerge under stress conditions or favorable environmental conditions, causing symptoms that weaken vines or can lead to plant death.