Terroir 2010 banner
IVES 9 IVES Conference Series 9 A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

Abstract

The aim of the project was to characterize the Premium Denomination of Guaranteed Origin (DOCG) “Colline Teramane” wine-growing region and to delineate and define homogeneous zones (terroir units) within it, by applying a multivariate clustering approach combined with geomatics. The inventory, characterization and classification of the land resources included components of climate (temperature and rainfall from meteorological stations), landform (Digital Elevation Model) and lithology (geolithologic map). Managing of environmental variables was performed using a GIS. From the environmental variables, vine-related derived indices (bioclimatic: Huglin index, cool night index, Riberau-Gayon-Peynaud index; and morphologic: Aspect, Topographic Wetness Index, Curvature, Slope, Incoming Solar Radiation) were calculated, spatialized and implemented to the GIS. Then, normalized variable values for each raster cell were use in a PCA followed by a multivariate clustering algorithm (Isodata) to obtain a continuous morpho-climatic map, in which each cluster represented a unit or zone. Finally, the morpho-climatic map obtained was overlaid with the geolithologic map. The result shows different morpho-climatic conditions located over different lithotypes.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

Jose Carlos Herrera Nuñez (1), Solange Ramazzotti (1), Michele Pisante (1)

(1) Agronomy and Crop Sciences Research and Education Center, Department of Food Science,
University of Teramo, via C. Lerici 1, 64023 Mosciano Sant’Angelo (TE), Italy

Contact the author

Keywords

Geomatics, GIS, Agro-ecological zoning, multivariate clustering, terroir unit

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.