Terroir 2010 banner
IVES 9 IVES Conference Series 9 A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

Abstract

The aim of the project was to characterize the Premium Denomination of Guaranteed Origin (DOCG) “Colline Teramane” wine-growing region and to delineate and define homogeneous zones (terroir units) within it, by applying a multivariate clustering approach combined with geomatics. The inventory, characterization and classification of the land resources included components of climate (temperature and rainfall from meteorological stations), landform (Digital Elevation Model) and lithology (geolithologic map). Managing of environmental variables was performed using a GIS. From the environmental variables, vine-related derived indices (bioclimatic: Huglin index, cool night index, Riberau-Gayon-Peynaud index; and morphologic: Aspect, Topographic Wetness Index, Curvature, Slope, Incoming Solar Radiation) were calculated, spatialized and implemented to the GIS. Then, normalized variable values for each raster cell were use in a PCA followed by a multivariate clustering algorithm (Isodata) to obtain a continuous morpho-climatic map, in which each cluster represented a unit or zone. Finally, the morpho-climatic map obtained was overlaid with the geolithologic map. The result shows different morpho-climatic conditions located over different lithotypes.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

Jose Carlos Herrera Nuñez (1), Solange Ramazzotti (1), Michele Pisante (1)

(1) Agronomy and Crop Sciences Research and Education Center, Department of Food Science,
University of Teramo, via C. Lerici 1, 64023 Mosciano Sant’Angelo (TE), Italy

Contact the author

Keywords

Geomatics, GIS, Agro-ecological zoning, multivariate clustering, terroir unit

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.