Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Abstract

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes. It was of interest to reanalyse this compositional database to determine if regional variation in Shiraz composition exists, and if so, to identify analytical approaches which might best discriminate the response of this variety to the unique growing conditions imposed by regional or sub-regional variables. 

Methods and Results: For a preliminary regional study, Shiraz grapes were obtained from multiple geographical indices within South Australia, and analysed for a range of targeted volatile and non-volatile compounds, as well as by non-targeted near- and mid-infrared approaches. Using multivariate modelling, it was found that data generated using both the targeted and non-targeted analytical approaches could discriminate the samples on a regional basis. For a focused study on site diversity within the Barossa Valley, Shiraz grape samples were collected from a number of sub-regions, and from multiple locations within each vineyard (5-10). Grapes were micro-vinified, and grape and wine samples were further analysed for non-volatiles using targeted and non-targeted approaches. Grape samples were also assessed using near- and mid-infrared spectroscopy. It was found using the targeted analytical approach that within-vineyard variability exceeded between-vineyard variation for some measures, preventing discrimination of vineyards or sub-regions using multivariate modelling. However, using the data generated from multiple non-targeted analytical approaches, within-vineyard variation was substantially reduced. This enabled Shiraz vineyards to be clearly defined using a non-targeted ‘chemical fingerprint’ and showed some potential to discriminate the Barossa sub-regions. Mass spectra generated using the non-targeted profiling approach were further assessed, and enabled the identification of grape-derived compounds which were relevant to the sub-regional response. 

Conclusion:

Non-targeted profiling of grapes and wines showed the potential to discriminate geographical indices (region) as well as sites within a region, even though absolute differences in grape composition could be substantial. This indicates that certain aspects of grape chemistry are more sensitive to site- or region-specific variables than others. Further work could seek to identify individual compounds, or classes of compounds, which most consistently define the ‘terroir’ response for the Shiraz grape variety. 

Significance and Impact of the Study: Using the results of this study, new methods could be developed to quantify the relevant grape or wine metabolites identified using the non-targeted approach, in order to apply these more broadly within studies which seek to objectively characterise ‘terroir’.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Keren Bindon1*, Paul Smith1,2, Dylan Grigg3, Natoiya Lloyd1, Luca Nicolotti1, Jean Macintyre4, Roberta De Bei3, Cassandra Collins3

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
2Wine Australia, Industry House-National Wine Centre, Cnr Hackney and Botanic Roads, SA 5000, Australia
3The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
4Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA, 5352, Australia

Contact the author

Keywords

Shiraz, objective measures, grape and wine quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

«Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

A statistical model of sugar potential for Mourvèdre grapevine cultivar has been obtained using a group of 32 plots all around de south-east french mediterranean area.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.