Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Abstract

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes. It was of interest to reanalyse this compositional database to determine if regional variation in Shiraz composition exists, and if so, to identify analytical approaches which might best discriminate the response of this variety to the unique growing conditions imposed by regional or sub-regional variables. 

Methods and Results: For a preliminary regional study, Shiraz grapes were obtained from multiple geographical indices within South Australia, and analysed for a range of targeted volatile and non-volatile compounds, as well as by non-targeted near- and mid-infrared approaches. Using multivariate modelling, it was found that data generated using both the targeted and non-targeted analytical approaches could discriminate the samples on a regional basis. For a focused study on site diversity within the Barossa Valley, Shiraz grape samples were collected from a number of sub-regions, and from multiple locations within each vineyard (5-10). Grapes were micro-vinified, and grape and wine samples were further analysed for non-volatiles using targeted and non-targeted approaches. Grape samples were also assessed using near- and mid-infrared spectroscopy. It was found using the targeted analytical approach that within-vineyard variability exceeded between-vineyard variation for some measures, preventing discrimination of vineyards or sub-regions using multivariate modelling. However, using the data generated from multiple non-targeted analytical approaches, within-vineyard variation was substantially reduced. This enabled Shiraz vineyards to be clearly defined using a non-targeted ‘chemical fingerprint’ and showed some potential to discriminate the Barossa sub-regions. Mass spectra generated using the non-targeted profiling approach were further assessed, and enabled the identification of grape-derived compounds which were relevant to the sub-regional response. 

Conclusion:

Non-targeted profiling of grapes and wines showed the potential to discriminate geographical indices (region) as well as sites within a region, even though absolute differences in grape composition could be substantial. This indicates that certain aspects of grape chemistry are more sensitive to site- or region-specific variables than others. Further work could seek to identify individual compounds, or classes of compounds, which most consistently define the ‘terroir’ response for the Shiraz grape variety. 

Significance and Impact of the Study: Using the results of this study, new methods could be developed to quantify the relevant grape or wine metabolites identified using the non-targeted approach, in order to apply these more broadly within studies which seek to objectively characterise ‘terroir’.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Keren Bindon1*, Paul Smith1,2, Dylan Grigg3, Natoiya Lloyd1, Luca Nicolotti1, Jean Macintyre4, Roberta De Bei3, Cassandra Collins3

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
2Wine Australia, Industry House-National Wine Centre, Cnr Hackney and Botanic Roads, SA 5000, Australia
3The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
4Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA, 5352, Australia

Contact the author

Keywords

Shiraz, objective measures, grape and wine quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

Spatial determination of areas in the Western Balkans region favorable for organic production

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

Study of the oenological potential of varieties resistant to cryptogamic diseases and drought to anticipate varietal selection in Occitanie

In the context of climate change and the growing need to reduce the use of phytosanitary products, the exploration of disease-resistant grape varieties and/or adapted to drought conditions is becoming crucial for the wine industry in certain regions of France, such as Occitanie. Currently, exploring the oenological potential of varieties by analyzing their biochemical composition before and after winemaking comes rather late in the varietal selection process.

Cork and Wine: interactions and newly formed compounds

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine.

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).