Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Abstract

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes. It was of interest to reanalyse this compositional database to determine if regional variation in Shiraz composition exists, and if so, to identify analytical approaches which might best discriminate the response of this variety to the unique growing conditions imposed by regional or sub-regional variables. 

Methods and Results: For a preliminary regional study, Shiraz grapes were obtained from multiple geographical indices within South Australia, and analysed for a range of targeted volatile and non-volatile compounds, as well as by non-targeted near- and mid-infrared approaches. Using multivariate modelling, it was found that data generated using both the targeted and non-targeted analytical approaches could discriminate the samples on a regional basis. For a focused study on site diversity within the Barossa Valley, Shiraz grape samples were collected from a number of sub-regions, and from multiple locations within each vineyard (5-10). Grapes were micro-vinified, and grape and wine samples were further analysed for non-volatiles using targeted and non-targeted approaches. Grape samples were also assessed using near- and mid-infrared spectroscopy. It was found using the targeted analytical approach that within-vineyard variability exceeded between-vineyard variation for some measures, preventing discrimination of vineyards or sub-regions using multivariate modelling. However, using the data generated from multiple non-targeted analytical approaches, within-vineyard variation was substantially reduced. This enabled Shiraz vineyards to be clearly defined using a non-targeted ‘chemical fingerprint’ and showed some potential to discriminate the Barossa sub-regions. Mass spectra generated using the non-targeted profiling approach were further assessed, and enabled the identification of grape-derived compounds which were relevant to the sub-regional response. 

Conclusion:

Non-targeted profiling of grapes and wines showed the potential to discriminate geographical indices (region) as well as sites within a region, even though absolute differences in grape composition could be substantial. This indicates that certain aspects of grape chemistry are more sensitive to site- or region-specific variables than others. Further work could seek to identify individual compounds, or classes of compounds, which most consistently define the ‘terroir’ response for the Shiraz grape variety. 

Significance and Impact of the Study: Using the results of this study, new methods could be developed to quantify the relevant grape or wine metabolites identified using the non-targeted approach, in order to apply these more broadly within studies which seek to objectively characterise ‘terroir’.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Keren Bindon1*, Paul Smith1,2, Dylan Grigg3, Natoiya Lloyd1, Luca Nicolotti1, Jean Macintyre4, Roberta De Bei3, Cassandra Collins3

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
2Wine Australia, Industry House-National Wine Centre, Cnr Hackney and Botanic Roads, SA 5000, Australia
3The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
4Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA, 5352, Australia

Contact the author

Keywords

Shiraz, objective measures, grape and wine quality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Implications of the respect of pruning principles on grapevine development

After some decades sunk into oblivion, pruning has recently recovered the focus of grape growers and viticulturists worldwide. Attention is now being paid to the respect the sap flow continuity and to pruning wounds, as they may affect the general performance and longevity of the plant. The longevity and profitability are strongly affected by the increasing incidence of grapevine wood diseases (GWD), intensified by the omission of good pruning practices and leading to an increasingly aggressive pruning. The purpose of this study is to provide an objective evaluation of the short- and mid-term implications of different pruning practices that differ in the degree of observation several of pruning principles.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.