Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Abstract

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Methods and Results:

Landscape and Natural Biodiversity in the DOCG Conegliano-Valdobbiadene

A preliminary survey was carried out among winegrowers of the Prosecco DOCG area to gather information on aspects relating to biodiversity and the landscape. We focused on the biodiversity of Cartizze, one of the most historic and traditional sub-areas, and compared it with the rest of the DOCG. Data from the questionnaire gave a first evaluation on the level of global biodiversity and landscape preservation in this micro-terroir.

Sustainable Agronomic Techniques for the DOC Prosecco Area

Novel systems for precision irrigation of Glera vineyards are under investigation. Concerning the management of newly planted vineyards, we compared the effect of different crop load in young Glera vines, with the aim of defining optimum crop levels to obtain a balanced growth of all structures in developing plants. Furthermore, new irrigation and nutrition strategies to minimize the effects of climate change on the acidity of the variety Glera are under investigation.

Conclusion: 

Results from the survey on biodiversity indicated that the old age of the vineyards and the traditional agronomic techniques are among the factors contributing to maintain a higher biodiversity in the Cartizze. The loss of landscape identity is an incoming threat and its preservation is one of the most urgent foresight needs. All these elements must be promoted and extended to the other areas in the DOCG Conegliano Valdobbiadene. 

Results from the studies on vine irrigation, nitrogen supply and crop management indicate that the adoption of appropriate agronomic techniques allow to optimize the inputs to the vineyard, preserving the quality and identity of Prosecco wine in the current climate change context.  

Significance and Impact of the Study: The institution of the DOCG and DOC Prosecco denomination areas calls for renewed and effective strategies to promote and protect the value of these two distinct terroirs. Results from these studies will help promoting a higher terroir expression by means of a better exploitation of its natural resources and their economic value, trough the adoptions of agronomic techniques able to promote higher environmental sustainability and greater resilience of Glera to climate change.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Federica Gaiotti*, Diego Tomasi, Nicola Belfiore, Lorenzo Lovat, Matteo Tonon, Marco Lucchetta, Davide Boscaro

Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Viale 28 Aprile, 26, 31015 Conegliano (TV), Italy

Contact the author

Keywords

Glera cv., Prosecco wine, terroir, biodiversity, sustainable agronomic techniques

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Sustainable viticulture’ the “semi‐minimal” pruned “hedge” system for grape vines long term experience on cv. Sangiovese (Vitis vinifera L.)

In previous experiments carried out in Bologna on Sangiovese grapevines raised with the Australian “Minimal Pruning” system, it has been shown that this system left an excessive burden of buds on the vine.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65