Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Abstract

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Methods and Results:

Landscape and Natural Biodiversity in the DOCG Conegliano-Valdobbiadene

A preliminary survey was carried out among winegrowers of the Prosecco DOCG area to gather information on aspects relating to biodiversity and the landscape. We focused on the biodiversity of Cartizze, one of the most historic and traditional sub-areas, and compared it with the rest of the DOCG. Data from the questionnaire gave a first evaluation on the level of global biodiversity and landscape preservation in this micro-terroir.

Sustainable Agronomic Techniques for the DOC Prosecco Area

Novel systems for precision irrigation of Glera vineyards are under investigation. Concerning the management of newly planted vineyards, we compared the effect of different crop load in young Glera vines, with the aim of defining optimum crop levels to obtain a balanced growth of all structures in developing plants. Furthermore, new irrigation and nutrition strategies to minimize the effects of climate change on the acidity of the variety Glera are under investigation.

Conclusion: 

Results from the survey on biodiversity indicated that the old age of the vineyards and the traditional agronomic techniques are among the factors contributing to maintain a higher biodiversity in the Cartizze. The loss of landscape identity is an incoming threat and its preservation is one of the most urgent foresight needs. All these elements must be promoted and extended to the other areas in the DOCG Conegliano Valdobbiadene. 

Results from the studies on vine irrigation, nitrogen supply and crop management indicate that the adoption of appropriate agronomic techniques allow to optimize the inputs to the vineyard, preserving the quality and identity of Prosecco wine in the current climate change context.  

Significance and Impact of the Study: The institution of the DOCG and DOC Prosecco denomination areas calls for renewed and effective strategies to promote and protect the value of these two distinct terroirs. Results from these studies will help promoting a higher terroir expression by means of a better exploitation of its natural resources and their economic value, trough the adoptions of agronomic techniques able to promote higher environmental sustainability and greater resilience of Glera to climate change.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Federica Gaiotti*, Diego Tomasi, Nicola Belfiore, Lorenzo Lovat, Matteo Tonon, Marco Lucchetta, Davide Boscaro

Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Viale 28 Aprile, 26, 31015 Conegliano (TV), Italy

Contact the author

Keywords

Glera cv., Prosecco wine, terroir, biodiversity, sustainable agronomic techniques

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.