Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Abstract

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Methods and Results:

Landscape and Natural Biodiversity in the DOCG Conegliano-Valdobbiadene

A preliminary survey was carried out among winegrowers of the Prosecco DOCG area to gather information on aspects relating to biodiversity and the landscape. We focused on the biodiversity of Cartizze, one of the most historic and traditional sub-areas, and compared it with the rest of the DOCG. Data from the questionnaire gave a first evaluation on the level of global biodiversity and landscape preservation in this micro-terroir.

Sustainable Agronomic Techniques for the DOC Prosecco Area

Novel systems for precision irrigation of Glera vineyards are under investigation. Concerning the management of newly planted vineyards, we compared the effect of different crop load in young Glera vines, with the aim of defining optimum crop levels to obtain a balanced growth of all structures in developing plants. Furthermore, new irrigation and nutrition strategies to minimize the effects of climate change on the acidity of the variety Glera are under investigation.

Conclusion: 

Results from the survey on biodiversity indicated that the old age of the vineyards and the traditional agronomic techniques are among the factors contributing to maintain a higher biodiversity in the Cartizze. The loss of landscape identity is an incoming threat and its preservation is one of the most urgent foresight needs. All these elements must be promoted and extended to the other areas in the DOCG Conegliano Valdobbiadene. 

Results from the studies on vine irrigation, nitrogen supply and crop management indicate that the adoption of appropriate agronomic techniques allow to optimize the inputs to the vineyard, preserving the quality and identity of Prosecco wine in the current climate change context.  

Significance and Impact of the Study: The institution of the DOCG and DOC Prosecco denomination areas calls for renewed and effective strategies to promote and protect the value of these two distinct terroirs. Results from these studies will help promoting a higher terroir expression by means of a better exploitation of its natural resources and their economic value, trough the adoptions of agronomic techniques able to promote higher environmental sustainability and greater resilience of Glera to climate change.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Federica Gaiotti*, Diego Tomasi, Nicola Belfiore, Lorenzo Lovat, Matteo Tonon, Marco Lucchetta, Davide Boscaro

Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Viale 28 Aprile, 26, 31015 Conegliano (TV), Italy

Contact the author

Keywords

Glera cv., Prosecco wine, terroir, biodiversity, sustainable agronomic techniques

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Zonazione e vitigni autoctoni nel sud della Basilicata: metodologie integrate per la caratterizzazione di ambienti di elezione di biotipi storici finalizzati a vini di territorio nella DOC “Terre dell’Alta Val d’Agri”

I territori della DOC “Terre dell’Alta Val d’Agri”, a Sud della regione Basilicata, si caratterizzano per una elevata biodiversità autoctona autoselezionatesi su ambienti ecologicamente ben definiti,

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR in the study of deuterium distribution in intracellular water and fermentation products of grape carbohydrates using ethyl alcohol as an example

The paper presents results that develop the results of studies carried out in 2022-2023 under the OIV grant on the topic of distribution of deuterium (2H(D)) in the intracellular water of grapes and wines, taking into account the impact of natural, climatic and technogenic factors using quantitative nuclear magnetic resonance spectroscopy (qNMR).

A climatic characterisation of the sub-Appellations in the Niagara Peninsula wine region

This study used climatic and topographic data to characterize the sub-appellations that have been recently delineated in the Niagara Peninsula viticulture area in order to assess their potential for ripening early to late season Vitis vinifera varieties. No major differences were found in the ripening-period mean temperatures, but major differences in the diurnal temperature ranges were observed.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.