Terroir 2020 banner
IVES 9 IVES Conference Series 9 Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Abstract

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Methods and Results: A total of 196 commercial dry red wines from Ningxia autonomous region, Gansu province and Xinjiang autonomous region in Northwest China were sampled. Spectro-analysis and chemical titration were used to quantify physico-chemical indicators related to wine colour and flavour, including total anthocyanins, co-pigments, monomeric anthocyanins, polymeric anthocyanins, ionisation index, CIE color space, total phenols, flavonol, ethanol index, total tannin, gelatin index, HCl index, DPPH antioxidant activity, tartrate ester, titratable acid, and pH value. Principal Component Analysis (PCA) of the data showed that wine samples in Ningxia, Gansu and Xinjiang region had obvious clustering phenomena. Among them, total anthocyanin and polymeric anthocyanins in Ningxia wines were higher compared to other wines. Ningxia wines also had the highest total acids and lighter colour whereas Gansu wines had greater amounts of monomeric anthocyanins, co-pigments and phenolic indexes. Gansu wines were darker in colour with the highest pH values. The parameters of Xinjiang wines were ranged between Ningxia wines and Gansu wines. PCA also showed good discriminant results on wine vintages. Wines older than 3 years had more polymeric anthocyanins and stable colour whilst younger wines had more total anthocyanin and monomeric anthocyanin with brighter colour. In addition, younger wines had the highest phenolics. Grape cultivars also contributed to the difference of colour and flavour associated indexes. Among them, Cabernet Sauvignon wines displayed distinct characteristics compared to other wines. Values of total anthocyanins, DPPH antioxidant activity, ionisation index, Cab and HCl acid indexes of Cabernet Sauvignon wines were higher than those of other wines. Finally, a convolutional neuralnetwork model was used to discriminate and analyses the categorical data of wines. These data were standardized and analysised using TensorFlow. The corresponding fitness indexes were 99.14%, 90.52%, and 89.66% from Northwest China based on region, cultivar, and vintage.

Conclusions: 

Colour and flavour associated indexes of wines from Northwest China are strongly impacted by wine regions, cultivars, and vintages.

Significance and Impact of the Study: Wine regions in Northwest China are developing drastically in recent decades, however relevant criteria of colour-flavour quality to help manipulate winemaking practices are lacking in local wineries to ensure the quality of wine style. Our results highlighted the possibility of establishing such wine quality criteria specially for Northwest China based on building a discrimination model on wine physico-chemical related indicators.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Yu Zhao1, Guojie Jin1, Jiao Jiang1, Shijin Xue1, Kai Hu1*, Yongsheng Tao1,2*

College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Wine region, spectro-analysis, discrimination analysis, neural network analysis, colour-flavour physico-chemical indicators

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.

NIR based sensometric approach for consumer preference evaluation

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.